
DevOps Secrets Vault
Administrator Guide

Version: 2023.x

Publication Date: 12/11/2024

© Delinea, 2024

DevOps Secrets Vault Administrator Guide

Version: 2023.x, Publication Date: 12/11/2024

© Delinea, 2024

Warranty Disclaimer

DELINEA AND ITS AFFILIATES, AND/OR ITS AND THEIR RESPECTIVE SUPPLIERS, MAKE NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS, THE
SOFTWARE AND SERVICES, AND OTHERMATERIAL PUBLISHED ON OR ACCESSIBLE THROUGH THIS SITE FOR ANY
PURPOSE. ALL SUCHMATERIAL IS PROVIDED "AS IS" WITHOUTWARRANTY OF ANY KIND. DELINEA AND ITS
AFFILIATES, AND/OR ITS AND THEIR RESPECTIVE SUPPLIERS, HEREBY DISCLAIM ALLWARRANTIES AND
CONDITIONSWITH REGARD TO SUCHMATERIAL, INCLUDING ALL IMPLIEDWARRANTIES AND CONDITIONS OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT.

THE MATERIAL PUBLISHED ON THIS SITE COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. DELINEA AND ITS AFFILIATES,
AND/OR ITS AND THEIR RESPECTIVE SUPPLIERS, MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE MATERIAL
DESCRIBED HEREIN AT ANY TIME.

Disclaimer of Liability

IN NO EVENT SHALL DELINEA AND ITS AFFILIATES, AND/OR ITS AND THEIR RESPECTIVE SUPPLIERS, BE LIABLE
FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF USE, DATA, PROFITS OR
OTHER ECONOMIC ADVANTAGE) OR ANY DAMAGESWHATSOEVER, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTIONWITH THE USE OR
PERFORMANCE OF SOFTWARE, DOCUMENTS, PROVISION OF OR FAILURE TO PROVIDE SERVICES, OR MATERIAL
AVAILABLE FROM THIS SITE.

Table of Contents

Administrator Guide i

DevOps Secrets Vault Overview 1

Key Features 1
Free Version and Quick Start 1
API 2

Quick Links 2

Delinea Links 2
Third-Party Downloads 2

Quick Start 2

Step 1 - Create a DSV Account 3
Video Guide 3
Procedure 3

Step 2 - Download the Command Line Interface (CLI) 7
Video Guide 7

Windows Guide 7
Linux Video Guide 8

Procedure 8
Step 3 - Initialize the CLI 10

Video Guide 11
Procedure 11

Step 4 - Create a Secret 14
Video Guide 14
Procedure 14

Creating Secrets from a File 14
Creating Secrets from Direct Command 16
Retrieve a Secret 17
Filter JSON Command Output for Specific Fields 18
Separately Update Attributes, Data, and Description 18

Step 5 - Create Users 19
Creating Local Users 19
Authenticating the Local User 19

Step 6 - Provide Users Access to Secrets 20
Creating a User Group 20
Creating a Policy to Allow Access 20
Creating a Policy to Deny Access 21

Developer Resources 22

DSV API 22
SDKs 22
Downloads 22
Integrations 22

Delinea DevOps Secrets Vault Administrator Guide iii

Table of Contents

Delinea In-Product Integrations 23
Delinea In-Product Customization 23
Delinea Created Unpaid Integrations 23
Third Party Integrations to Delinea 23
Third Party Supporting Tools 24
Professional Services Integrations 24

APIs and SDKs 24
Downloads 24

DSV Concepts 24

Architecture and Security 25
Availability 25
Business Continuity and Disaster Recovery 26
Allow List 26
Confidentiality 26

Data at Rest 26
Data in Transit 26

Client Authentication 26
Integrity Checks 27

CLI Code Signing 27
Token Signing 27

Personally Identifiable Information (PII) and GDPR 27
Third Party SOC 2 Conformance Assessment 27

Audit 28
Permissions 28
API Endpoint 28
CLI Command 29
UI View 29
SIEM 29
Available Audit Logs 29

Break Glass 33
Bring Your Own Key (BYOK) Encryption 34

DSV's BYOK Approach 34
Dynamic Secrets 34

Linking 35
Search for linked Secrets 36

Encryption as a Service 36
DSV Engine 36

Organization Firewall 37

Usage 37

CLI Reference 37
CLI Command Syntax 37

Objects 38
Workflows 39

Delinea DevOps Secrets Vault Administrator Guide iv

Table of Contents

Parameters 39
Output Modifiers 41

Encoding 41
Filter 41
Out 42

Output Piping 42
Secret 43

Commands that Act on Secrets 43
Examples 44

User 50
Commands that Act on Users 50
Examples 51

Group 53
Commands that Act on Groups 54
Examples 54

Role 56
Commands that Act on Roles 57
Examples 57

Client 59
Commands that Act on Clients 59
Examples 59

Policy 62
Commands that Act on Policy 62
Policy Evaluation 63
Policy Examples 64

Admin Policy and Auth Providers 71
Commands that Act on Configuration 71

Audit Command 75
Flags 75
Usage Examples 75

Report Command 77
Secret Reporting 77
Group Reporting 79

Home Vault 81
Examples 81

DSV UI Reference 86
Navigating the UI 86
Customizing the UI 87
Audit 88
Viewing Vaults 89
Dashboard 90
Secrets 90

Viewing Secrets Metadata 91
Accessing Audit Details 92

Delinea DevOps Secrets Vault Administrator Guide v

Table of Contents

Creating and Deleting Secrets 92
Auth Providers 93

Downloading AuthProvider Information 94
Create a New Authentication Provider 94

Users 95
Viewing Users 95
Creating Users 97
Assigning Group Membership 98

Groups 98
Viewing Groups 99
Creating Groups 101
Deleting a Group 101

Roles 102
Viewing Roles 102
Viewing Role Details 103
Creating Roles 104
Deleting a Role 105

Policies 105
Viewing Policies 105
Viewing Policy Details 106
Creating a New Policy 107

Engines and Pools 108
Viewing and Pools 108
Creating a Pool 108
Viewing Pool Details 108
Viewing Attached Engines 109
Creating a New Engine 109
Viewing Engine Details 110

SIEM 111
Viewing SIEM Integrations 111
Creating a SIEM Integration for Auditing 112
Deleting a SIEM Integraion 113

Authentication 113
Password 113
Client Credentials 113
Thycotic One Authentication 114
Third Party Authentication 114
Profiles 115

Add a Profile to a Config 115
See the Config Contents 115
Using an Alternate Profile for a Specific CLI Action 115

Authentication: AWS 115
AWS Authentication Provider 116
AWS User Example 116

Delinea DevOps Secrets Vault Administrator Guide vi

Table of Contents

AWS Role Example 118
Authentication: Azure 119

Azure Authentication Provider 119
Azure User Assigned MSI Example 120
Azure Resource Group 121

Authentication Google Cloud Platform (GCP) 122
Google Service Account Authentication 122
Google Compute Engine (GCE) Metadata Authentication 128
Google Kubernetes Engine (GKE) Authentication 132

Authentication: OIDC 138
OIDC Providers 139

Common Steps 139
Google Identity Provider Example 141
Azure AD OIDC Example 143
Okta Identity Provider Example 144

Authentication: Certificate 150
Prerequisites 150
CLI Configuration 151

Dynamic Secrets 151
Linking 152
Search for linked Secrets 153
IaaS Dynamic Secrets 153

AWS Dynamic Secrets 153
AAD Graph Dynamic Secrets 159
Microsoft Graph Dynamic Secrets 168
GCP Dynamic Secrets 175

Database Dynamic Secrets 179
DSV Engine Required 180
Microsoft SQL Dynamic Secrets 180
MySQL Dynamic Secrets 182
Oracle Dynamic Secrets 184
Dynamic Secret Examples 186
PostgreSQL Dynamic Secrets 188
MongoDB Dynamic Secrets 191

DSV Engine 193
Starting an Engine 193

Engine Wizard 194
Engine Flags 194
CLI & Engine Program 194

Starting an Engine in a Container 195
Installing the Engine as a Service/Daemon 196

Supported Service Frameworks/Process Managers 196
Installation Commands 196
Installation Steps 197

Delinea DevOps Secrets Vault Administrator Guide vii

Table of Contents

Encryption as a Service 197
Management Subcommands 197
Operation Subcommands 197
Key Management Subcommands 197
Flags 198
Encrypting Data 199

Automatic Key Creation 199
Manual Key Creation 199
String Encryption 200
File Encryption 200

Key Rotation and Versioning 201
Creating a New Key Version 202
Rotating to an Existing Key Version 202

Manual Key Updating 203
Certificate Issuance 203

Generate a Signing Certificate 204
Register (Import) a Signing Certificate 206
Generate and Sign a Leaf Certificate 207
Sign a Certificate Given a Certificate Signing Request (CSR) 209
SSH Key Issuance 211

Adding an SSH public key to a server 211
Trusting a group of keys signed by a root key 212

Break Glass 213
Commands and Flags 213
Break Glass Setup 214
Trigger Break Glass 214

Bring Your Own Key (BYOK) Configuration 215
Verify Key Changes in Your AWS Account: Assuming CloudTrail is Enabled 215

SIEM Audits 216
Syslog 216
Common Event Format (CEF) 218
JSON 220
Splunk 221

Tutorials 222

Administration and Configuration Tutorials 222
Policy Tutorial 223

Policy Structure 223
Least Privilege Approach 224
Create Users, Groups and Permissions 225
Initialize the New Admin Account 228
Delegate Secret Management Rights to DevOps Team1 229
Test the DevOps Team Permissions to Read Secrets 232
Grant Groups the Ability to Search Entities via List Privileges 234
Test the DevOps Team Permissions to Search Resources 236

Delinea DevOps Secrets Vault Administrator Guide viii

Table of Contents

Delegate Rights to Manage Policies to a DevOps TeamMember 236
Test DevOpsUsr1's Permission to Create Policies 238
Delegate Rights to "Create Roles" to a DevOps TeamMember 239
Create DevOpsTeam1's Client Credentials for an Application 241
Test the "Read Secret" Permissions of the DevOpsTeam1's Client Credential 242

Use DSVWith Direnv 244
Challenges 244
Quick Start on Creating a Secret Like This 244
DSV Tweaks 245
Limit Scope Of Secret When Possible 245

Azure Dynamic Secrets 245
Challenge/Scenarios 245
Solution 245
Benefits 246

DSV Integrations 246

Kubernetes 247
Selecting a Kubernetes plugin 247
Kubernetes Sidecar Architecture 247

Description of Operations 248
Introduction to the Client 249
Introduction to the Broker 251

Kubernetes Mutating Webhook 254
Architecture 254
Implementing the Kubernetes Mutating Webhook 255

Terraform 255
Jenkins 255

Usage 255
Jenkins Declarative Pipeline 257

Pipeline Script 257
GitHub 259
GitLab 259
Azure DevOps 260
DSV lookup plugin for Ansible 260

Requirements 260
Authentication 260
Usage 260
Permissions 261
Example 261

Puppet 264
Chef 264

Release Notes 264

DSV Cloud Service: Change Log 264

Delinea DevOps Secrets Vault Administrator Guide ix

Table of Contents

Support 282

Free Licenses 282
Paid Licenses 282
Obtaining a Support PIN 283
Support by Phone 283
Support by Email 283
Support Ticketing 284

Delinea DevOps Secrets Vault Administrator Guide x

Table of Contents

DevOps Secrets Vault Overview

Delinea's DevOps Secrets Vault is a high velocity vault that centralizes secrets management, enforces access, and
provides automated logging trails. This cloud-based solution is platform agnostic and designed to replace hard-
coded credentials in applications, micro-services, DevOps tools, and robotic process automation. This vault
ensures IT, DevOps and Security teams the speed and agility needed to stay competitive without sacrificing
security.

DevOps Secrets Vault is deployed as an API-as-a Service. Organizations can sign-up and create their first secrets
in minutes with no infrastructure to manage or maintain.

Key Features

n Command line interface (CLI) for Windows, Mac, and Linux/Unix

n RESTful Application programming interface (API)

n APIaaS offering infinite scalability, high-speed access, and agility with no infrastructure maintenance

n Automated and searchable logging

n Five-nines availability

n Disaster recovery via multi-region deployment and hot-standby

n Local caching (with the CLI)

n Sandbox tenant available for testing before deployment to production

n Cloud authentication

l Amazon Web Services (AWS)

l Microsoft Azure

l Google Cloud Platform (GCP)

n Developer Resources (SDK, CLI, integrations, plug-ins)

n SOC II Compliance - report available upon request

Free Version and Quick Start

Delinea offers a feature-complete, non-time-limited free version of DevOps Secrets Vault that supports up to 250
Secrets and 20000 API calls a month.

Signing up for the free version is the first step in getting a DevOps Secrets Vault tenant even if you plan to upgrade
to a paid plan immediately.

To get started with guided help, go to the Quick Start section.

When you are ready to begin your trial, head here to sign-up for a free tenant: DevOps Secrets Vault Free and
download the CLI here: DevOps Secrets Vault CLI

Delinea DevOps Secrets Vault Administrator Guide Page 1 of 284

DevOps Secrets Vault Overview

https://delinea.com/products/devops-secrets-management-vault
https://dsv.secretsvaultcloud.com/downloads

API

This documentation is for general DevOps Secrets Vault Operation and the CLI. If you prefer the API, here is the
API documentation

Quick Links

Delinea Links

n DSV Product Home Page

n Delinea Support Portal Login Page (gets PIN for email or phone support)

n DSV CLI Executables Download Page

n DSV API Documentation

n Delinea GitHub Page (SDKs and Plug-ins)

Third-Party Downloads

n jq Library for filtering JSON results

n Linux pass

n Windows Credential Manager

n AWS CLI

n Azure User Assigned MSI

Quick Start

The Quick Start gets you up and running with the DSV application with easy step-by-step instructions that allow you
to create a DSV tenant and populate it with secrets.

The following steps are presented, along supporting video clips. All you need is a valid email and client where the
application will be installed.

n Step 1 - Sign Up with Delinea for a Tenant

n Step 2 - Download the Command Line Interface (CLI) tool

n Step 3 - Initialize the CLI for the first time

n Step 4 - Create and retrieve your first secret

n Step 5 - Create Users

n Step 6 - Provide access with policies

Delinea DevOps Secrets Vault Administrator Guide Page 2 of 284

Quick Links

https://dsv.secretsvaultcloud.com/api
https://delinea.com/products/devops-secrets-management-vault
https://support.delinea.com/s/
https://dsv.secretsvaultcloud.com/downloads
https://dsv.secretsvaultcloud.com/api
https://github.com/DelineaXPM
https://stedolan.github.io/jq/
https://www.passwordstore.org/
https://support.microsoft.com/en-us/help/4026814/windows-accessing-credential-manager
https://aws.amazon.com/cli/
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

Step 1 - Create a DSV Account

Video Guide

Procedure

Your tenant is your DevOps Secrets Vault cloud account and the rights to access it. Signing up qualifies you for a
free feature-complete trial version of DevOps Secrets Vault. The trial version is limited to 250 Secrets and 2500
API calls per month. Start by configuring the free version and upgrade when you need more capacity.

To get your tenant:

1. Visit Delinea's DevOps Secrets Vault Home Page. Click Try It Free and fill out the DevOps Secrets Vault free
web form and submit.

2. After submitting the form, you will receive an email from Delinea Sales, with the subject "DevOps Secrets Vault".
Click Cloud Portal.

Note: You can wait until you need support to sign up. If you already have a support account because of
a previous Delinea cloud subscription, use your existing account for support. Refer to the Support
Services Guide for complete details about our support policy.

Delinea DevOps Secrets Vault Administrator Guide Page 3 of 284

Quick Start

https://player.vimeo.com/video/490936975
https://delinea.com/products/devops-secrets-management-vault
https://thycotic.my.salesforce.com/sfc/p/#37000000KAUl/a/1G000000TU6g/_z6_M8tD_6.x3JB2LOI8q20vzWkkiLhKbFv0Wec9Fw0
https://thycotic.my.salesforce.com/sfc/p/#37000000KAUl/a/1G000000TU6g/_z6_M8tD_6.x3JB2LOI8q20vzWkkiLhKbFv0Wec9Fw0

3. At the Setup dialog, select your Product Environment. The three regions are independent for data sovereignty
reasons (like GDPR). All three provide geographical redundancy as follows:

n secretsvaultcloud.eu (Frankfurt), Active Standby: Ireland

n secretsvaultcloud.com (US-East), Active Standby: US-West

n secretsvaultcloud.com.au (Sydney), Active Standby: Singapore

4. Next you are taken to **Thycotic One** to set a password.

Note: The person setting up the DevOps Secrets Vault tenant will be considered the *initial
administrator* andThycotic One will be established as that person's authentication provider. This is to
enable Delinea to help in case the password is lost.

You can set future users as local or use Thycotic One, AWS, Azure or GCP.

Later *Thycotic One can be setup later to enable SSO to an identity provider of your choice using OIDC, or
enable 2FA when used as the identity provider. The options are TOTP (such as Google Authenticator) and
SMS.

Delinea DevOps Secrets Vault Administrator Guide Page 4 of 284

Quick Start

5. Next, select your Product Environment and supply a Hostname. The hostname is your tenant name.

6. Read and agree to the EULA and GDPR (if applicable).

Delinea DevOps Secrets Vault Administrator Guide Page 5 of 284

Quick Start

7. The tenant will be created. DSV takes between 5-20 minutes to complete tenant creation. When complete, click
Go To Application.

Proceed to Step2 - Download the Command Line Interface (CLI).

Delinea DevOps Secrets Vault Administrator Guide Page 6 of 284

Quick Start

Step 2 - Download the Command Line Interface (CLI)

Video Guide

Windows Guide

Delinea DevOps Secrets Vault Administrator Guide Page 7 of 284

Quick Start

https://player.vimeo.com/video/490936839/

Linux Video Guide

Procedure

1. Go to the DevOps Secrets Vault Downloads page. Locate the most recent CLI executable for your platform.

Note: Once installed, periodically check the download site for updates and inform the user if an update is
available.

2. Install the dsv executable onto the workstation.

Windows and macOS - Download the executable file onto each of the workstations that will operate DevOps

Delinea DevOps Secrets Vault Administrator Guide Page 8 of 284

Quick Start

https://player.vimeo.com/video/490936730
https://dsv.secretsvaultcloud.com/downloads

Secrets Vault. Locate the executable in your downloads folder. The file name will reflect the OS and 32-bit or 64-
bit architecture.

To simplify command entry, Rename the executable to "dsv" (macOS); "dsv" or "dsv.exe" (Windows). Place the
executable in the file directory location of your choice and note the path.

Linux - Copy the dsv executable file, open a shell window and use the `curl` command to download the file. Do
the same for the hash file.

3. Check the hash for the dsv executable you downloaded, in order to ensure that there are no issues with the file
and that the file is not corrupt.

Windows - In a Command window, type Get-FileHash dsv.exe in the directory where your executable resides
and observe the Hash code in the response. The Hash code should match the code obtained when you open
the executable file (see example).

Delinea DevOps Secrets Vault Administrator Guide Page 9 of 284

Quick Start

macOS and Linux - Then, run the sha256sum command to check the hash for the dsv executable you
downloaded. Next run the cat command to catalog the hash file. Ensure the hash codes match to ensure that
there are no issues with the file and that the file is not corrupt.

4. Windows and Linux Only - Change permissions on the dsv executable using the `chmod` command.

5. Add the executable path to the Environment Variable. Adding the location of the executable to your environment
variable enables you to invoke `dsv` without specifying its path or having to pre-pend `.\`

Note: Setting a new path requires a system restart.

n For Windows, press the Windows key and type edit environment variables. At the Environment Variables
dialog, locate the System Variables (or under User Variables, if you want make it available only in the
context of that user), select Path, click edit, and add the path to the dsv executable (example:
C:\Users\<name>\). Click OK.

n For macOS, open Terminal. Run touch ~/.bash_profile; open ~/.bash_profile. In TextEdit, add the
path to the dsv executable to export PATH=" . Save the . bash_profile file.

n For Linux or macOS, use export to modify the shell profile file, ~.profile or ~.bash_profile typically, so that it
adds dsv to the PATH on system startup: export PATH=~thycotic/cli:$PATH.

6. Enable Autocomplete. Autocomplete is supported for bash, zsh, and fish shells only. To turn on Autocomplete
for the CLI, run dsv -install and restart your shell. Now when you type out the beginning of a command such
as dsv s and hit tab. The command automatically updates to dsv secret.

Autocomplete also helps with expanding the secret path on dsv secret read. Put in the beginning of the path,
such as dsv secret read resources and hit tab to get the next part of the path. If there are multiple matching
sub-paths, hit tab twice to print out the available options.

For example: typing dsv secret read resources/us-east- and hitting tab twice will show the output of any
secrets below that path, such as resources/us-east-1/server resources/us-east-2/server.

Proceed to Step 3 - Initialize the Command Line Interface (CLI).

Step 3 - Initialize the CLI

DSV CLI initialization presents you with a series of prompts and options. If you are the initial administrator who
setup the tenant, then you will have the required information from signing-up. If you are not the initial administrator,

Delinea DevOps Secrets Vault Administrator Guide Page 10 of 284

Quick Start

you will need the collect this information from that person:

n tenant name

n domain

n local or federated user, and if federated, which authentication provider

n credentials - username or access key, password, or secret key

Video Guide

Procedure

1. Begin setup with the dsv init command. This will start a workflow.

2. Enter your tenant name.

? Please enter tenant name:

The tenant name was provided to the initial administrator by ## when you set up your account.

Note: You need only enter your tenant name, i.e., example not example.secretsvaultcloud.com,
because the domain is set by region and that is covered in the next question.

3. Select the domain.

Delinea DevOps Secrets Vault Administrator Guide Page 11 of 284

Quick Start

https://player.vimeo.com/video/490936892?h=6e7f6b8080

? Please choose domain: [Use arrows to move, type to filter]
> secretsvaultcloud.com
secretsvaultcloud.eu
secretsvaultcloud.com.au
secretsvaultcloud.ca

Your domain is based on the server location that was chosen during provisioning: US, EU, AU or CA.

4. Choose a type of credentials and cache storage.

? Please select store type: [Use arrows to move, type to filter]
> File store
None (no caching)
Pass (Linux only)
Windows Credential Manager (Windows only)

n Select File store to keep the credentials in files. If you select this, DSV prompts for the directory location.

n Select None (no caching) to omit storing the credentials. With this option active,DSV requires
authentication with every command.

n Select Pass (Linux only) to use Linux pass for encrypted storage.

n Select Windows Credential Manager (Windows only) to use Windows Credential Manager. to store
credentials.

5. Choose a cache strategy for secrets.

? Please enter cache strategy for secrets: [Use arrows to move, type to filter]
> Never
Server then cache
Cache then server
Cache then server, but allow expired cache if server unreachable

The choice here depends on your organization's security, network connectivity, performance, and systems
availability.

Note: Server refers to your DSV tenant and cache refers to storage on the local machine with the CLI
installed.

n Select Never to never cache secrets. Every secret read request requires an API call.

n Select Server then cache to make an API call every time. If not accessible, then the cached secret is
used.

n Select Cache then server to use the cached secret unless it has expired, in which case an API call is
made.

n Select Cache then server, but... to make an API call if the cached secret has expired, but if the API call
fails, then the expired cached Secret is used.

6. Select an authentication type.

? Please enter auth type: [Use arrows to move, type to filter]
> Password (local user)
Client Credential

Delinea DevOps Secrets Vault Administrator Guide Page 12 of 284

Quick Start

https://www.passwordstore.org/
https://support.microsoft.com/en-us/help/4026814/windows-accessing-credential-manager

Thycotic One (federated)
AWS IAM (federated)
Azure (federated)
GCP (federated)
OIDC (federated)
x509 Certificate

n Select Password (local user) to authenticate by username and password.

n Select Client Credential to authenticate by Client ID and Client Secret.

n Select ## (federated) to authenticate using ##'s access manager.

Note: The person who signed up for DevOps Secrets Vault is the initial administrator and is
automatically setup using ##. If this is you, then select this option. This enables you to reset the
password if it is ever lost and/or setup up 2FA if desired. It is up to the customer to then decide if all
other users are local or federated through one the available providers.

n Select AWS IAM (federated) to authenticate as a trusted Identity Access Management Role or User. Refer
to AWS Authentication.

n Select Azure (federated) to authenticate as a trusted Azure Managed Service Identity (MSI). Refer to
Azure Authentication.

n Select GCP (federated) to authenticate as a trusted Google Service Account. Refer to GCP
Authentication.

n Select OIDC (federated) to authenticate through ## to an external IDP using the OIDC protocol. Refer to
OIDC Authentication.

n Select x509 Certificate to authenticate using certificates. Refer to Certificate Authentication.

7. Complete the authentication.

After initialization was completed, type $ dsv auth to obtain and display your access token.

You can now use the CLI to create your first secret in the DevOps Secrets Vault. Refer to Step 4 - Create a Secret.

Delinea DevOps Secrets Vault Administrator Guide Page 13 of 284

Quick Start

Step 4 - Create a Secret

Video Guide

Procedure

Two methods for entering secrets are supported: File and Direct Command.

n File - The File method uses a file that contains the attributes for secrets that are uploaded in bulk to a path in
your vault, using the CLI.

n Direct Command - The Direct Command method uses the CLI to individually specify the creation of secrets
directly into a path in your vault.

Note: After secrets are created, they can be viewed in the "DSV UI Reference" on page 86 in your Home
Vault.

Creating Secrets from a File

1. To create a secret, open a text editor and create and save a file (.json) similar to this example. The JSON is
arbitrary, so you can set any number of fields (key-value pairs) for a secret. Files may also be used to enter
attributes --attributes or a description --desc

{

Delinea DevOps Secrets Vault Administrator Guide Page 14 of 284

Quick Start

https://player.vimeo.com/video/490936887

 "host": "server01",

 "username": "administrator",

 "password": "secretp@ssword"

}

2. Add as many secrets as needed. Save the file and note its location.

3. Issue a dsv secret create command and specify the path to its storage location.

Note: Every secret correlates uniquely with a specific path that describes the location of the secret in your
Home Vault. The idea here is no different than the concept of a path to a file on a hard drive. Paths are also
the basis for creating policies to determine who (or what) has which rights to those secrets in your Home
Vault.

Linux:

dsv secret create --path servers:us-east:server01 --data @secret.json

Powershell:

dsv secret create --path servers:us-east:server01 --data '@secret.json'

CMD:

dsv secret create --path servers:us-east:server01 --data @secret.json

Outputs:

{

 "attributes": null,

 "created": "2019-01-03T23:11:48Z",

 "createdBy": "users:thy-one:admin@company.com",

 "data": {

 "host": "server01",

 "password": "secretp@sssword",

 "username": "administrator"

 },

 "description": "",

 "id": "c5239a6c-422e-4f57-b3a6-5167656af852",

 "lastModified": "2019-01-03T23:11:48Z",

 "lastModifiedBy": "users:thy-one:admin@company.com",

 "path": "servers:us-east:server01",

 "version": "0"

}

Delinea DevOps Secrets Vault Administrator Guide Page 15 of 284

Quick Start

Creating Secrets from Direct Command

Instead of using a file, the data can be entered as part of the command. The following options are available:

--data -d JSON object containing the secret data

--attributes JSON object containing attributes about the secret

--desc String with description of the secret

--body JSON object with 1 or more of the above options

--path -r Target path to a secret (required)

--help Help with this command

Note: If the --body option is passed in and any of the other options are also passed in (data, attributes or
desc), the body option will be politely ignored.

Linux:

dsv secret create --path servers:us-east:server01 --data '
{"host":"server01","username":"administrator","password":"secretp@sssword"}'

dsv secret create --path servers:us-east:server01 --attributes '
{"secretType":"webServer","serverName":"server01","adminLevel":"readOnly"}'

dsv secret create --path servers:us-east:server01 --desc "webserver secret values"

dsv secret create --path servers:us-east:server01 --body '{"data":
{"host":"server01","username":"administrator","password":"secretp@sssword"},

"attributes":
{"secretType":"webServer","serverName":"server01","adminLevel":"readOnly"},"desc":"webserv
er secret values"}'

Powershell:

dsv secret create --path servers:us-east:server01 --data '
{\"host\":\"server01\",\"username\":\"administrator\",\"password\":\"secretp@sssword\"}'

dsv secret create --path servers:us-east:server01 --attributes '
{\"secretType\":\"webServer\",\"serverName\":\"server01\",\"adminLevel\":\"readOnly\"}'

dsv secret create --path servers:us-east:server01 --desc \"webserver secret values\"

dsv secret create --path servers:us-east:server01 --body '{\"data\":
{\"host\":\"server01\",\"username\":\"administrator\",\"password\":\"secretp@sssword\"},

\"attributes\":
{\"secretType\":\"webServer\",\"serverName\":\"server01\",\"adminLevel\":\"readOnly\"},\"d
esc\":\"webserver secret values\"}'

Note: dsv secret create can be replaced with dsv home create.

Outputs:

Delinea DevOps Secrets Vault Administrator Guide Page 16 of 284

Quick Start

{

 "attributes": null,

 "created": "2019-01-03T23:11:48Z",

 "createdBy": "users:thy-one:admin@company.com",

 "data": {

 "host": "server01",

 "password": "secretp@sssword",

 "username": "administrator"

 },

 "description": "",

 "id": "c5239a6c-422e-4f57-b3a6-5167656af852",

 "lastModified": "2019-01-03T23:11:48Z",

 "lastModifiedBy": "users:thy-one:admin@company.com",

 "path": "servers:us-east:server01",

 "version": "0"

}

Retrieve a Secret

To retrieve a secret use the Secret read command and specify the path to the Secret's storage location.

dsv secret read --path /servers/us-east/server01

Output defaults to JSON:

{

 "attributes": null,

 "created": "2019-11-08T15:46:14Z",

 "createdBy": "users:thy-one:admin@company.com",

 "data": {

 "host": "server01",

 "password": "secretp@ssword",

 "username": "administrator"

 },

 "description": "",

 "id": "c5239a6c-422e-4f57-b3a6-5167656af852",

 "lastModified": "2020-01-17T15:38:49Z",

 "lastModifiedBy": "users:thy-one:admin@company.com",

 "path": "servers:us-east:server01",

 "version": "0"

}

If you would like the output to be in YAML:

dsv secret read --path /servers/us-east/server01 -e yaml

Outputs:

Delinea DevOps Secrets Vault Administrator Guide Page 17 of 284

Quick Start

attributes: null

created: "2019-11-08T15:46:14Z"

createdBy: users:thy-one:admin@company.com

data:

 host: server01

 password: secretp@ssword

 username: administrator

description: ""

id: c5239a6c-422e-4f57-b3a6-5167656af852

lastModified: "2020-01-17T15:38:49Z"

lastModifiedBy: users:thy-one:admin@company.com

path: servers:us-east:server01

version: "0"

Filter JSON Command Output for Specific Fields

When you need to locate a specific field in a JSON output, use a JSON filter. An example use case is writing scripts
that need to obtain a password but lack the capacity to efficiently parse JSON.

dsv secret read --path /servers/us-east/server01 -f data.password

Would return just the password.

Separately Update Attributes, Data, and Description

Using the --data, --attributes, and --desc flags, respectively, you can update a Secret's data, attributes, and
description separately. For example:

dsv secret update servers/us-east/server01 --data '{"host": "server01", "password":
"badpassword","username": "admin"}' --desc 'update description' --attributes '{"attr":
"add one"}'

{

 "attributes": {

 "attr": "add one"

 },

 "created": "2019-11-08T15:46:14Z",

 "createdBy": "users:thy-one:admin@company.com",

 "data": {

 "host": "server01",

 "password": "badpassword",

 "username": "admin"

 },

 "description": "update description",

 "id": "4348e941-f945-460d-98e8-2ab659362f51",

 "lastModified": "2020-02-22T20:48:05Z",

Delinea DevOps Secrets Vault Administrator Guide Page 18 of 284

Quick Start

 "lastModifiedBy": "users:thy-one:admin@company.com",

 "path": "servers:us-east:server01",

 "version": "1"

}

Refer to Steps 5 Create Users and 6 Provide User Access to create users, user groups and policies that provide the
framework for managing the secrets.

Step 5 - Create Users

With the first Secrets created, the next step is to create Users or Roles that will access those secrets.

For this quick-start guide, as the intial admin, we will create a local User. To use other authentication methods, see
authentication.

Note: This procedure steps through creating users with the CLI. Users can also be created, viewed, and
managed in the DSV User Interface.

Creating Local Users

Create a user and assign credentials using the following format:

dsv user create --username local@company.com --password userpassword

Note: For local users, the email address serves only as the username.

Authenticating the Local User

The local user can then, on their own machine, download the CLI and start the dsv init process. The admin will
have to provide the user with their password, DSV tenant name, and domain (region).

The process is here: Initializing the CLI for the first time

When they get to the Please enter auth type:

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) #{ThycoticOne}# (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (federated)

The user will select (1) and enter their username and password. The user should change their password
immediately as a best practice. The command to change the password is:

dsv auth change-password

Delinea DevOps Secrets Vault Administrator Guide Page 19 of 284

Quick Start

At this point, the users are created and able to authenticate to DSV (they can confirm with the command dsv auth

and get a token), however, they will not have permission to access anything yet because DSV defaults to deny all.
In the next step, the admin will create policies granting permission to these users.

Step 6 - Provide Users Access to Secrets

Note: This procedure steps through creating user groups and policies with the CLI. User Groups and
policies can also be created, viewed, and managed in the DSV User Interface.

n With two secrets, each located at:

servers:us-east:server01 and servers:us-east:production:server01

n And two users:

developer1@company.com and developer2@company.com

You can create a policy to allow:

n both users access to servers:us-east:server01

n developer1@company.com to have access to servers:us-east:production:server01

n developer2@company.com to be denied access to servers:us-east:production:server01

Creating a User Group

Optionally, we can put these Users in a Group with two commands.

n The first command creates the group:

dsv group create --group-name firstgroup

n The second command puts the Users in the Group

dsv group add-members --group-name firstgroup --data '{"memberNames":
["developer1@company.com","developer2@company.com"]}'

Creating a Policy to Allow Access

The admin has to create a policy for the Group to get access to the Secrets. Here is a sample CLI command:

dsv policy create --path secrets:servers:us-east --actions '<.*>' --desc 'Allow Policy' --
subjects groups:firstgroup --effect allow

Delinea DevOps Secrets Vault Administrator Guide Page 20 of 284

Quick Start

n path starts with secrets: followed by the secret path.

Note: resources is not specified separately, but will default to the path and everything below it, so in
this case secrets:servers:us-east:<.*>

n actions is a wildcard, so full create, read, update, delete are allowed.

n subjects are the Users that are getting access to the secrets.

n effect will either allow or deny access.

n Use the command dsv policy read secrets:servers:us-east -e yaml to read the resulting policy:

 path: secrets:servers:us-east

 permissionDocument: - actions: - <.*> conditions: {} description: Allow
Policy effect: allow id: xxxxxxxxxxxxxxxxxxxx meta: null resources: -
secrets:servers:us-east:<.*> subjects: - groups:firstgroup version: "0"

n This policy will now enable both Users (developer1@company.com and developer2@company.com) to gain full
access to all secrets located at the path servers:us-east and below.

Creating a Policy to Deny Access

If we decide that the developer2@company.com should no longer have access to the secrets at servers:us-
east:production, we can write another policy to deny access. The command would look like this:

dsv policy create --path secrets:servers:us-east:production --actions '<.*>' --desc 'Deny
Policy' --subjects 'users:<developer2@company.com>' --effect deny

Use the command dsv policy read secrets:servers:us-east:production -e yaml to view the resulting
policy:

path: secrets:servers:us-east:production

permissionDocument:

- actions:

 - <.*>

 conditions: {}

 description: Deny Policy

 effect: deny

 id: xxxxxxxxxxxxxxxxxxxx

 meta: null

 resources:

 - secrets:servers:us-east:production:<.*>

 subjects:

 - users:<developer2@company.com>

version: "0"

Now developer1@company.com has access to everything at servers:us-east and below, including servers:us-
east:production. However, developer2@company.com only has access to the secrets at servers:us-east and
not at servers:us-east:production

Delinea DevOps Secrets Vault Administrator Guide Page 21 of 284

Quick Start

This is the end of the quick-start guide, but for more on policies see "CLI Reference" on page 37 in this
documentation.

Developer Resources

The following resources and integrations are available for the DevOps Secrets Vault.

Contacting the Integrations Team

Any questions or issues, please reach out to integrations@delinea.com.

DSV API

API Documentation

SDKs

n Python SDK for DSV

n Go SDK for DSV

n Java SDK for DSV

Downloads

DSV CLI Executables Download Page

Integrations

Integrations are supported to the extent of the third-party product procedures documented for those integrations.
Please contact the third-party for any customized setup of the integrated product.

Note: As a prerequisite of support for any of Delinea’s integrations, the customer must have sufficient
access to the Delinea product and all parts of the third-party integration, and must be able to provide
Delinea with requested information and meetings to examine in order to progress reported issues.

Access each integrated product folder to learn more about the integration details. These include:

n Kubernetes Sidecar

n Kubernetes Mutating Webhook

n Terraform

n Azure DevOps

n Jenkins

n Puppet

n Ansible

n Chef

Delinea DevOps Secrets Vault Administrator Guide Page 22 of 284

Developer Resources

mailto:integrations@delinea.com
https://dsv.secretsvaultcloud.com/api
https://github.com/DelineaXPM/python-dsv-sdk
https://github.com/DelineaXPM/dsv-sdk-go
https://github.com/DelineaXPM/dsv-sdk-java
https://dsv.secretsvaultcloud.com/downloads

n GitHub

n GitLab

Delinea In-Product Integrations

Integrations that are directly built into paid Delinea products will be supported by the Delinea support team and
defects will be handled by the Delinea product developers who maintain the Delinea product where the issue
occurs.

Delinea In-Product Customization

Many Delinea products can be customized in order to achieve an integration between the Delinea product and third-
party systems. If Delinea documents an integration as a supported integration, the integration will be configured as
specified in our documentation and is verified at the time of their creation by Delinea to ensure that they work as
designed.

Note: Assistance with design, configuration, or troubleshooting of customization designed to interact with
third-party systems is not within the scope of what the Delinea Support organization can provide at this
time. Delinea does not guarantee that every configuration of third-party systems will work with in product
customizations. Assistance with design, configuration or troubleshooting for customization of Delinea
products can be worked on as part of a paid engagement with the Professional Services team.

Delinea Created Unpaid Integrations

Unpaid integrations created by Delinea are code or applications that are not sold by Delinea for monetary
compensation. They are provided for the use of Delinea customers and in some cases are available to the public.

An example of this type of integration would be the RabbitMQ Helper, migration tools created by Delinea, and code
provided on the Delinea GitHub.These integrations were verified at the time of their creation by Delinea to ensure
that they work as designed.

Note: Assistance with configuration or troubleshooting of these tools with third-party systems is not within
the scope of what the Delinea Support organization can provide at this time. Delinea does not guarantee
that every configuration of third-party systems will work with 3rd-Party Integrations. Assistance with the use
of these tools, configuration, or troubleshooting for customization of Delinea products can be worked on as
part of a paid engagement with the Professional Services team.

Third Party Integrations to Delinea

This category of integration encompasses any code or script which integrates with Delinea usually by API that is
written by a third-party vendor. Delinea does not guarantee that third-party code is written correctly or that it
respects Delinea product limitations.

For instance, the third-party code may fail to respect Token expiry or issue calls too quickly without waiting for
responses and time-outs. Third-party integrations are supported by verifying that the Delinea application is
functioning correctly. Delinea does not support, code or maintain third-party code or scripts.

For commercially sold third-party products which have vendor support, Delinea may elect to attend calls. The third-
party product must be able to provide a knowledgeable resource and share specifics about how they integrate with

Delinea DevOps Secrets Vault Administrator Guide Page 23 of 284

Developer Resources

the Delinea application. The goal of such calls would be to advise the third-party vendor about what they need to
change to better integrate with Delinea products.

Third Party Supporting Tools

jq Libraryfor filtering JSON results

Linux pass

Windows Credential Manager

AWS CLI

Azure User Assigned MSI

Professional Services Integrations

Code or scripts written for or provided to customers as part of Professional Services are not included in the
definitions above. Please refer to the terms of the warranty on your Professional Services engagement.

APIs and SDKs

DSV API Documentation

Python SDK for DSV

Go SDK for DSV

Java SDK for DSV

Downloads

DSV CLI Executables Download Page

DSV Concepts

This section covers some key concepts that are important to understand DSV operations. It is recommended to
read each subsection for understanding before using the application.

Delinea DevOps Secrets Vault Administrator Guide Page 24 of 284

DSV Concepts

https://stedolan.github.io/jq/
https://www.passwordstore.org/
https://support.microsoft.com/en-us/help/4026814/windows-accessing-credential-manager
https://aws.amazon.com/cli/
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://dsv.secretsvaultcloud.com/api
https://github.com/DelineaXPM/python-dsv-sdk
https://github.com/DelineaXPM/dsv-sdk-go
https://github.com/DelineaXPM/dsv-sdk-java
https://dsv.secretsvaultcloud.com/downloads

Architecture and Security

Users authenticate locally or by a Thycotic One, Amazon AWS, Microsoft Azure, or Google Cloud Platform
authentication provider.

Within the DSV application platform, the API Gateway receives API calls, obtains the responses, and relays them to
the caller using HTTPS GET, PUT, POST and other methods common to the REST architecture. The Authorizer
uses OAuth to handle API Gateway authorization.

The Vault Application hosts the core DSV functionality and auto-scales to demand.

Extensive logging enables strong audit trails and protections, while encryption protects Secrets at-rest an in-transit.

Availability

Delinea architected DSV to support 5-nines (99.999%) uptime.

Delinea DevOps Secrets Vault Administrator Guide Page 25 of 284

DSV Concepts

Business Continuity and Disaster Recovery

DevOps Secrets Vault leverages AWS DynamoDB global tables for data storage, with a configuration using
automatic dual-region replication as a continuous backup mechanism.

n Of the two AWS Regions used in this architecture, one serves as the primary application platform and the other
as a hot stand-by.

n Delinea monitors both regions via AWS Route 53 so that if the primary platform fails, client traffic automatically
routes to the hot stand-by in under one minute.

Allow List

Since DSV's outbound IP for syslog comes from AWS Lambda, a static address cannot be provided for allow list
purposes. Instead, use the cmds from the AWS documentation below and filter by the AWS public IP ranges for the
service and region: https://aws.amazon.com/blogs/developer/querying-the-public-ip-address-ranges-for-aws/.
Alternatively, syslog messages can be routed through the engine to remove the need for an IP allow list.

Note: As AWS ranges change, the allow list should be periodically updated.

Confidentiality

Data at Rest

Information about customers in DynamoDB, application activity and related logs stored in S3 and sometimes in
Elasticsearch during analysis, will always be encrypted transparently.

Customer Secret data is further encrypted by the application with a customer specific key in AWS KMS.

Data in Transit

DSV establishes the HTTPS connection using the TLS 1.2 protocols. For server-side authentication, DSV relies on
Amazon-issued digital certificates.

Client Authentication

DSV provides five methods for client authentication:

n Username/password (local)

n Username/password (Thycotic One)

n Client ID

n AWS IAM

n Microsoft MSI

Authentication grants an access token with a one-hour time-to-live (TTL). When the token times out, DSV requires
re-authentication.

The username/password authentication method uses a refresh token good for 48 hours. The refresh token renews
along with each new access token, so the 48 hours counts relative to the last access token’s time of issuance. If the
refresh token expires, DSV requires re-authentication.

Delinea DevOps Secrets Vault Administrator Guide Page 26 of 284

DSV Concepts

The initial administrator (the one who signs up for a tenant) is always setup with Thycotic One to enable Delinea
support.

Integrity Checks

Both code signing and token signing are used to ensure integrity.

CLI Code Signing

The download website provides a 256-bit hash of the executable files in a text file, so that customers may run a
hash check on the downloaded material. The Windows CLI executable is also signed.

Token Signing

Access tokens granted to Users or applications must transit from the client to the API, potentially allowing an
unauthorized party to tamper with the tokens. To prevent this, DSV signs access tokens.

Personally Identifiable Information (PII) and GDPR

DSV requires certain personally identifiable information (PII) to identify each User’s account. This includes the
User’s name, email address, and password, these being the minimum necessary for authentication, and the User’s
IP address, used during auditing as an indicator of the User’s location.

DSV functions to store and protect User’s “Secrets,” and to make the Secrets accessible to the User and potentially
their designees. The term Secrets here commonly means passwords, which are not PII, but DSV Users can store
anything they choose as a Secret—for example, images, documents, or other files.

n Accordingly, only Users know whether DSV Secrets have PII status.

n Because the nature of DSV is to encrypt and protect Secrets for Users, Secrets that are PII will de facto benefit
from DSV’s stringent controls for privacy and user control, in accordance with both the letter and spirit of the
GDPR.

Only select, trusted employees of Delinea can access Secrets data and decrypt it, and only via a controlled process
that generates an audit trail inaccessible to those employees. This serves the interests of users without
compromising their privacy and control.

In GDPR terms, Delinea customers are the data controllers, and Delinea is the data processor.

n The customer determines all information (the Secrets) stored in the vault and decides how long to store it.

n Each DSV customer entirely controls their Users, their User Roles, and the access to Secrets by their Users,
according to the policies of the customer organization. DSV logs activity so the customer can monitor access
and changes to the Secrets, Users, and Roles within the vault—again, all according to the customer’s policies.

n For traceability, DSV logs include source IP addresses and time stamps.

Delinea conducts a Privacy Impact Assessment (PIA) annually to verify continued conformance to GDPR
principles.

Third Party SOC 2 Conformance Assessment

The Delinea SOC 2 Type II report contains an independent third-party assessment of our control environment. The
report is available upon request with an NDA.

Delinea DevOps Secrets Vault Administrator Guide Page 27 of 284

DSV Concepts

The report ties to the AICPA’s Trust Services Criteria (specifically the Security, Availability, and Confidentiality
criteria) and issues annually in accordance with the AICPA’s AT Section 101 (Attest Engagements).

Audit

DSV captures and stores audit logs of actions taken. The following fields are captured in audit data.

Attribute Description Example

id Audit ID "00000000-1111-2222-8b1f-b94bb1fab746"

tenant Tenant ID "abcd1234567890jbo090"

tenantName Tenant Name "test"

principal Security principal that performed action "users:user"

principalItemId Principal item ID "12345678-0000-41b8-8b02-0123456789ab"

action Action performed "POST"

status Response status code 200

path Resource path action performed on "token"

ipaddress IP Address logged from client "10.10.10.10"

created Audit created date "2020-05-01T01:09:07.225694779Z"

message Additional details "login succeeded"

Permissions

To allow reading audit logs create a policy that allows list action on audit resource. Example of creating such a
policy via CLI:

dsv policy create --path audit --actions list --resources audit --subjects groups:audit-
readers

API Endpoint

You can make direct REST API requests to access audit logs. Example using curl as follows:

curl -s -H "Authorization: ${DSV_TOKEN}"
'https://example.secretsvaultcloud.com/v1/audit?startDate=2023-04-20'

Read more at Audit API documentation page.

Delinea DevOps Secrets Vault Administrator Guide Page 28 of 284

DSV Concepts

https://dsv.secretsvaultcloud.com/api#tag/Audit

CLI Command

DSV CLI supports reading and filtering audit logs via the dsv audit command. Read more at Audit Command
page.

UI View

DSVWeb UI (or simply UI) can display audit logs. Learn more at Audit page.

SIEM

The audit logs can be sent to registered Security Information and Event Management (SIEM) servers in near real
time. DSV supports following types of SIEM listeners:

Type Transport

Syslog UDP, TCP, TLS

CEF UDP, TCP, TLS

JSON UDP, TCP, HTTP, HTTPS

Splunk HTTPS

Read more at SIEM Audits page.

Available Audit Logs

Path Method Status Description

clients POST 201 Log when client is created successfully

clients:{clientId} GET 200 Log when client is read

clients:bootstrap:{clientId} GET 200 Log when client credential is read

clients GET 200 Log when client search is performed

clients:{clientId} DELETE 200 Log when client is deleted

clients:{clientId}:restore GET 200 Log when client is restored

config:auth POST 201 Log when new auth provider is saved

config:auth:{name} GET 200

config:auth:{name} PUT 200 Log when auth provider is updated

Delinea DevOps Secrets Vault Administrator Guide Page 29 of 284

DSV Concepts

Path Method Status Description

config:auth:{name}:version:{version} GET 404,200 Log when auth provider is read by
version

config:auth GET 200 Log when auth provider is searched

config:auth:{name}:rollback:{version} PUT 404,200 Log when auth provider config is rolled
back

config:auth:{name} DELETE 200 Log when auth provider config is
deleted

config:auth:{name}:restore GET 200 Log when auth provider config is
restored

config:policies:{path} GET 200 Log when policy is read

config:policies:{path}:version:
{version}

GET 404,200 Log when policy is ready by version

config:policies POST 201 Log when policy is created

config:policies:{path} PUT 200 Log when policy is updated

config:policies:{path}:rollback:
{version}

PUT 404,200 Log when policy is rolled back

config:policies GET 200 Log when policy is searched

config:policies:{path} DELETE 200 Log when policy is deleted

config:siem POST 201 Log when siem endpoint is registered

config:siem:{name} PUT 200 Log when siem endpoint is updated

config:siem:{name} GET 200 Log when siem endpoint is read

config:siem:{name} DELETE 200 Log when siem endpoint is deleted

crypto:key:{path} POST 201 Log when new encryption key is created

crypto:rotate POST 201 Log when data and key are rotated

crypto:key:{path} GET 200 Log when key metadata is read

crypto:key:{path} DELETE 204 Log when key is deleted

Delinea DevOps Secrets Vault Administrator Guide Page 30 of 284

DSV Concepts

Path Method Status Description

crypto:key:{path}:restore PUT 204 Log when key is restored

crypto:encrypt POST 200 Log when data is encrypted

crypto:decrypt POST 200 Log when data is decrypted

engines POST 201 Log when dsv engine is created

engines:{name}:ping POST 200 Log when an engine is pinged

engines:{name} GET 200 Log when an engine is read

engines:{name} DELETE 200 Log when an engine is deleted

pools POST 201 Log when a pool is created

pools:{name} GET 200 Log when a pool is read

pools:{name} DELETE 204 Log when a pool is deleted

groups POST 201 Log when a group is created

groups:{name}:members POST 200 Log when a group member is added

groups:{name} GET 200 Log when a group is read

users:{name}:group GET 200 Log when group members are read

groups:{name}:members DELETE 204 Log when group members are deleted

groups:{name} DELETE 200 Log when group is deleted

groups:{name}:restore GET 200 Log when group is restored

groups GET 200 Log when groups are searched

pki:register POST 201 Log when CA root is saved

pki:root POST 200 Log when CA root is generated

pki:sign POST 200 Log when certificate is signed

pki:leaf POST 200 Log when leaf certificate & key are
created

pki:ssh-cert POST 200 Log when SSH cert is saved/generated

Delinea DevOps Secrets Vault Administrator Guide Page 31 of 284

DSV Concepts

Path Method Status Description

roles POST 201 Log when role is created

roles:{name} PUT 200 Log when role is updated

roles:{name} GET 200 Log when role is read

roles:{name}:version:{version} GET 200 Log when role is read by version

roles GET 200 Log when roles are searched

roles:{name} DELETE 200 Log when role is deleted

roles:{name}:restore GET 200 Log when role is restored

task:status:{id} GET 200 Log when task status is read

token POST 200 Log when user authenticates
successfully

revoke:{refreshtoken} POST 204 Log when a refresh token is revoked

token POST 0 Log when user authentication attempt
fails

users:{name} PUT 200 Log when a user is updated

users POST 201 Log when a user is created

users:{name}:password POST 200 Log when user password is updated

users:{name} GET 200 Log when user is read

users:{name}:version:{version} GET 200 Log when user is read by version

users GET 200 Log when users are searched

users:{name} DELETE 200 Log when user is deleted

users:{name}:restore GET 200 Log when user is restored

config GET 500,404,200 Log when config is read

config:version:{version} GET 404,500,200 Log when config is read by version

config POST 400,500,201 Log when config is created or updated

Delinea DevOps Secrets Vault Administrator Guide Page 32 of 284

DSV Concepts

Path Method Status Description

secrets:{path,id} GET 404,200 Log when secret is read

secrets:{path,id}:version:{version} GET 404,200 Log when secret is read by version

secrets:{path,id}:rollback:{version} PUT 404,200 Log when secret is rolled back

secrets:{path,id}::description GET 404,200 Log when secret is described

secrets:{path}::listpaths GET 0 Log when secret paths are listed
[disabled]

secrets:{path} POST 201 Log when secret is created

secrets:{path,id} PUT 200 Log when secret is updated

secrets:{path,id} DELETE 200 Log when secret is deleted

secrets:{path,id}:restore GET 200 Not logged

secrets GET 200 Log when secrets are searched

home:{principal}:{path} GET 404,200 Log when home secret is read

home:{principal}:{path} POST 201 Log when home secret is created

home:{principal}:{path} PUT 200 Log when home secret is updated

home:{principal}:{path} DELETE 200 Log when home secret is deleted

home:{principal}:{path}::description GET 404,200 Log when home secret is described

home:{principal} GET 200 Log when home is searched

home:{principal}:{path}:version:
{version}

GET 404,200 Log when home secret is read by
version

Break Glass

The Break Glass feature is intended for emergency use if the Super Administrator account credentials are lost or
compromised. Break Glass allows a selected group of DSV users to recover Super Administrator access.

When Break Glass is first setup, DSV distributes shares of the Super Administrator credentials to users who will
have Super Administrator access after Break Glass is triggered. If enough shares are combined, the users can
change ownership of the Super Administrator account to a new group of admins.

To trigger a Break Glass event, a user will run the breakglass command along with the minimum number of shares
needed to recover the account.

Steps for using break glass.

Delinea DevOps Secrets Vault Administrator Guide Page 33 of 284

DSV Concepts

Bring Your Own Key (BYOK) Encryption

All customer data in DSV is encrypted at rest and in transit, using Delinea-managed keys in AWS Key Management
Service (KMS). BYOK encryption allows you to encrypt your cloud product data with keys hosted in your own AWS
account. With BYOK encryption, you have more control over the management of your keys. You can also revoke
access at any time.

There are many benefits of BYOK encryption.

n Reduced risk: BYOK adds another layer of protection for sensitive data.

n Improved data governance: Access to encryption keys hosted in your AWS account can be logged and
monitored via AWS CloudTrail.

n Increased control: You can revoke access to your encryption keys.

DSV's BYOK Approach

We support encryption using encryption keys generated and hosted in your AWS account via the AWS Key
Management Service (KMS). This solution enables encryption of your data at different layers throughout the
applications.

Usage and Examples of BYOK

Dynamic Secrets

Dynamic Secrets are automatically generated at the time of request. This differs from the standard Secret store
read request where the credentials remain the same until changed by a user. They can be used when you need to
provide credentials to a user or resource, like a configuration tool, but the access should expire after a set period of
time.

Supported Types:

IaaS Dynamic Secrets

n AWS

n Azure AD Graph

n Azure MS Graph

n GCP

Database Dynamic Secrets

n MSSQL

n MySQL

n Oracle

n PostgreSQL

n MongoDB

Delinea DevOps Secrets Vault Administrator Guide Page 34 of 284

DSV Concepts

Linking

In order for Dynamic Secrets to be generated, they rely on a Base Secret stored in DSV that contains the provider's
credentials that are used to automatically generate the ephemeral access keys.

The linking is done through the attributes section in the Secret JSON. For example the following Secret temp-
api has no data, but is linked to a different AWS IAM Secret that contains the access and secret key information.
The linkConfig defines the type of linking and the linked Secret path.

Attribute Description

linkConfig link type and path to the linked Secret

linkConfig.linkType the only valid value is "dynamic"

linkConfig.linkedSecret secret path to the base credential

Delinea DevOps Secrets Vault Administrator Guide Page 35 of 284

DSV Concepts

{

 "id": "cc619722-6538-4891-b0a6-2c7fa1776a67",

 "path": "dynamic:aws:creds:temp-api",

 "attributes": {

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "base:aws:creds:api-account"

 }

 },

 "description": "",

 "data": {

 }

}

Search for linked Secrets

To get a list of all dynamic secrets linked to a base secret, issue the command dsv secret search --query

<base secret path> --search-links

Refer also to dynamic secrets and steps.

Refer also to engine and steps.

Encryption as a Service

DSV offers both a fully managed and a user managed Encryption as a Service (EaaS). DSV is able to
encrypt/decrypt strings and files under 2MB via the fully-managed encryption API, the manual encryption API or in
the CLI using the crypto command. The key used for the encryption and decryption is stored as a secret-like object
within DSV's architecture. The operations of encrypting and decrypting data are done on-the-fly. Those results are
returned to the caller immediately and are not saved within DSV.

steps

DSV Engine

An engine is an agent performing tasks on any remote machine. After deployment, the agent opens a real-time two-
way communication channel with the main DSV API. Users of the API can send the agent tasks to complete, and
the agent, having completed a task or failed, reports back to the caller.

An engine is designed to be a long-running process that completes tasks on demand and automatically in the
background.

The initial use of the DSV Engine will be to support database dynamic secrets. In this use-case, a user or
application will request access to a database. DSV will have a "base" secret that gives DSV access to the database
and permission to create users along with permissions and credentials. DSV will provide those new credentials to
the user or application for use. Then when the TTL expires, DSV will go back to the database and delete that user.
This provides just-in-time access and eliminates the need for credential rotation.

Future uses of the DSV Engine will include additional authentication methods and password rotation.

Delinea DevOps Secrets Vault Administrator Guide Page 36 of 284

DSV Concepts

https://dsv.secretsvaultcloud.com/api#tag/EaaS-Auto
https://dsv.secretsvaultcloud.com/api/index.html#tag/EaaS-Manual

Organization Firewall

The DSV Engine uses secure websockets (wss) on port 443 TCP outbound. Since most organizations will already
have this port open for web access, you will likely not need to make firewall changes.

steps

Usage

This section covers detail day-to-day vault usage and operations. Every page in this section is recommended
reading for anyone using or operating DSV.

CLI Reference

Organized by the type of command object, these articles use task-oriented examples to show you how to use
DevOps Secrets Vault.

CLI commands commonly act on these object types:

n Secret

n User

n Policy

n Group

n Role

n Client

n Config

This Reference complements the separately maintained DevOps Secrets Vault API Reference.

CLI Command Syntax

With few exceptions, CLI commands follow a simple syntax:

dsv <object> <action> [<args>]

For example, the CLI command that creates a new role looks like this:

dsv role create --name "my-role" --desc "role for example"

Delinea DevOps Secrets Vault Administrator Guide Page 37 of 284

Usage

https://dsv.secretsvaultcloud.com/api

Objects

Object Definition

audit Show audit records.

auth Get auth token, manage auth cache or change password.

breakglass Manage Break-Glass setup.

cli-config Manage the CLI configuration.

client Manage client credentials.

config Manage main config or auth providers.

crypto Encryption-as-a-Service.

engine Manage engines.

eval Inspect environment and configuration values.

group Manage groups.

home Manage Home Vault secrets.

init Initialize or add a new profile to the CLI configuration.

pki Manage certificates.

policy Manage policies.

pool Manage engine pools.

report Shows report records for secrets and groups.

role Manage roles.

secret Manage secrets.

siem Manage SIEM endpoints.

usage Fetch API usage info.

user Manage users.

whoami Show current identity.

Delinea DevOps Secrets Vault Administrator Guide Page 38 of 284

Usage

Workflows

A workflow is a series of questions that guides the user through the create or update process. For many objects, if
the action is create or update, then adding no flags will start a workflow.

Workflow supported commands include:

n dsv init

n dsv config auth-provider

n dsv policy

n dsv siem

n dsv pki

n dsv user

n dsv group

n dsv role

If the object doesn't support a workflow, then the flag --help is assumed.

Parameters

Parameters can be:

n strings or numerics

n Boolean

n JSON data

n file path

Strings

Most commands take strings as parameters, quoted or unquoted. For example, the username uses quotes but the
password does not. Both are valid string parameter values.

dsv user create --username "admin1" --password BadP@ssword

If a string value has spaces, it must be wrapped in quotes. For example, when creating a Role, the description
should be quoted.

dsv role create --name test-role --desc "a test role"

Boolean

Some parameters are simple Boolean flags controlling whether or not something applies. For example, use --
plain to not beautify the JSON output.

Delinea DevOps Secrets Vault Administrator Guide Page 39 of 284

Usage

dsv secret read --path example:bash-json --plain

JSON Data and OS-Specific Syntax

In some cases the parameter expects JSON. For example, the --data parameter on a dsv secret create

command expects JSON data.

JSON parameter formatting depends on the OS and shell program.

n Linux: wrap the JSON in a single quote (')

n PowerShell: wrap the JSON in a single quote (') and inside the JSON escape each double quote (") with a
backslash (\)

n cmd.exe: wrap the JSON in a double quote (") and inside the JSON escape each double quote (") with a
backslash (\)

dsv secret create --path example:bash-json --data '{"password":"bash-secret"}'

PS C:> dsv secret create --path example:ps-json --data '{\"password\":\"powershell-
secret\"}'

C:> dsv secret create --path example:cmd-json --data "{\"password\":\"cmd-secret\"}"

File Path and OS-Specific Syntax

Passing JSON as a parameter remains practical only as long as the JSON remains short. Instead of passing JSON
as a parameter, you can pass it as a file, using the@ prefix to specify the path to the file.

For instance, here the command is to create a Secret using a local file named secret.json. The examples show the
minor variations among operating systems and shells.

dsv secret create --path example:bash-json --data @secret.json

PS C:> dsv secret create --path example:ps-json --data '@secret.json'

C:> dsv secret create --path example:cmd-json --data @secret.json

For passing a file as data, only Powershell requires the file path and name to be wrapped in quote marks, in this
case single-quote marks.

Delinea DevOps Secrets Vault Administrator Guide Page 40 of 284

Usage

Output Modifiers

DSV offers global flags that combine with most commands to format or redirect output.

n --encoding, -e specify the output format as either JSON or YAML

n --filter, -f filter to output only a specific JSON attribute; this feature uses the jq library

n --out, -o control the output destination; valid values: stdout, clip, and file:[file-name], with stdout the default

n --plain do not beautify JSON or YAML output

Encoding

dsv secret read --path servers:us-east:server01 -e yaml

Outputs:

attributes: null

data:

 host: server01

 password: Secretp@ssword

 username: administrator

id: c5239a6c-422e-4f57-b3a6-5167656af852

path: servers:us-east:server01

Filter

The filter modifier relies on a lightweight, flexible command line JSON processor, the jq library. Visit the JQ GitHub
repo to learn more about how to use JQ.

The following code block illustrates:

dsv secret read --path resources:server01:mysql

Outputs:

{

 "attributes": {

 "tag1": "this is a tag"

 },

 "created": "2019-07-17T21:33:35Z",

 "createdBy": "users:ben",

 "data": {

 "foo": ["bar2", "blah"],

 "password": "root-password",

 "username": "blah"

Delinea DevOps Secrets Vault Administrator Guide Page 41 of 284

Usage

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

 },

 "id": "59f2ab72-7f51-4f0e-8ffd-35cb94b818fb",

 "lastModified": "2019-07-17T21:36:01Z",

 "lastModifiedBy": "users:ben",

 "path": "resources:server01:mysql",

 "version": "1"

}

dsv secret read --path resources:server01:mysql --filter data.password

Outputs:

root-password

The command without the filter produced the entire Secret, while the command with the filter read out only the
password value.

Out

The -o modifier allows output to be redirected to a file.

dsv secret read --path servers:us-east:server01 -o file:Secret.json

\$ nano Secret.json

Contents of Secret.json:

{

 "attributes": null,

 "data": {

 "host": "server01",

 "password": "Secretp@ssword",

 "username": "administrator"

 },

 "id": "c5239a6c-422e-4f57-b3a6-5167656af852",

 "path": "servers:us-east:server01"

}

Using -o clip puts the command output on the OS clipboard.

Output Piping

Output piping takes advantage of a common coding practice in which the value of a parameter passed to a
command is itself a command or set of commands. When the outer command receiving the parameter executes, it

Delinea DevOps Secrets Vault Administrator Guide Page 42 of 284

Usage

evaluates the parameter, which requires it to run the command that was passed as a parameter. The output of that
command becomes the parameter value for the outer command, which then continues to execute.

As an example, you can save any DSV CLI output into an environment variable by piping the output from the
standard output into an environment variable.

export MYSecret=$(dsv secret read --path Secret1)

$MYSecret=dsv secret read --path Secret1

Both of the preceding would create an environment variable named MYSecret that would store the Secret data. To
view the data you would use:

echo $MYSecret

Secret

Secrets are sensitive data protected in your vault. Many Secrets relate to authentication—such as passwords, SSH
keys, and SSL certificates—but Secrets can be anything represented as a file on computer storage media.

When DSV has possession of Secrets outside the vault (that is, the CLI or API has reproduced a Secret anywhere
outside the vault), it keeps the Secrets encrypted and locked down in conformance to the specific permissions and
policies in the config.

Commands that Act on Secrets

Command Action

bustcache clear the Secret cache

create create a Secret in the vault

search search for Secrets

describe view Secret metadata only

read view a Secret's data

edit modify a Secret using the OS's default command-line editor, such as VI, nano, or Notepad

update modify a Secret, with --data, --attributes and --desc flags to modify selected portions only,
and a Boolean --overwrite flag to control whether the --data flag's content overwrites or
merges with extant data object fields

Delinea DevOps Secrets Vault Administrator Guide Page 43 of 284

Usage

Command Action

delete delete a Secret

restore restore a Secret (if within 72 hours of deletion)

rollback for a Secret that has had more than one version, roll back to an earlier version

Examples

Bustcache

The bustcache command clears the local cache, if present.

dsv secret bustcache

Create

The create command uses the --data flag to pass data into the secret. This flag accepts JSON entered directly
into the command line or by a path (absolute or relative) to a JSON file.

Bash examples

dsv secret create --path us-east:server02 --data '
{"username":"administrator","password":"bash-secret"}'

dsv secret create --path us-east:server02 --data @/home/user/secret.json

dsv secret create --path us-east:server02 --data @../secret.json

Powershell examples

PS C:> dsv secret create --path us-east:server02 --data '
{\"username\":\"administrator\",\"password\":\"powershell-secret\"}'

dsv secret create --path us-east:server02 --data '@/home/user/secret.json'

dsv secret create --path us-east:server02 --data '@../secret.json'

Delinea DevOps Secrets Vault Administrator Guide Page 44 of 284

Usage

CMD Examples

PS C:> dsv secret create --path us-east:server02 --data "
{\"username\":\"administrator\",\"password\":\"cmd-secret\"}"

dsv home secret --path us-east:server02 --data @/home/user/secret.json

dsv home secret --path us-east:server02 --data @../secret.json

The --attributes flag can be used to add user-defined metadata in the same way that data is added.

The --desc flag can be used to add a simple string. If the string has any spaces, then it should be enclosed in
double quotes.

As a Bash example:

dsv secret create --path us-east:server02 --attributes '{"priority":"high"}' --desc
"Covert Secret" --data '{"username":"administrator","password":"bash-secret"}'

Update

Use update to change a Secret's data. The command has several flags pertinent to Secrets:

n the --data flag allows you to only update the data portion of the Secret

l the Boolean --overwrite flag controls whether the --data flag's content overwrites or merges with extant
data object fields

l the data object accepts as many fields as you choose

n the --attributes flag allows you to only update the attributes of the Secret

n the --desc flag allows you to only update the description of the Secret

The --overwrite flag applies only at the field level; it does not allow you to merge new attributes of a data field into
existing attributes of that field, only to merge new data fields into the extant set of data fields.

As with create, for the value of the --data parameter update accepts JSON entered directly at the command line,
or the path to a JSON file.

dsv secret update --path us-east:server02 --data {\\"password\\":\\"Secret2\\"}

or

Delinea DevOps Secrets Vault Administrator Guide Page 45 of 284

Usage

dsv secret update --path us-east:server02 --data @secret.json

update is similar to create but operates on an existing secret. When using update for other commands like policy or
auth-providers, it is an all or nothing change. ie, for those if you want to change only one field, you have to update all
of them. However, for Secrets, it is possible to update only one field and not change the others.

If you have this secret:

{

 "attributes": {

 "attr": "add one"

 },

 "created": "2019-09-20T16:12:57Z",

 "createdBy": "users:thy-one:admin@company.com",

 "data": {

 "host": "server01",

 "password": "badpassword"

 },

 "description": "update description",

 "id": "c893b4f8-9425-4fa4-acbf-2806d6f1fa82",

 "lastModified": "2020-01-17T15:43:27Z",

 "lastModifiedBy": "users:thy-one:admin@company.com",

 "path": "servers:us-east:server01",

 "version": "12"

}

This Bash command will only change the value for host in the data section.

dsv secret update servers:us-east:server01 --data '{\"host\":\"unknown\"}'

{

 "attributes": {

 "attr": "add one"

 },

 "created": "2019-09-20T16:12:57Z",

 "createdBy": "users:thy-one:admin@company.com",

 "data": {

 "host": "unknown",

 "password": "badpassword"

 },

 "description": "update description",

 "id": "c893b4f8-9425-4fa4-acbf-2806d6f1fa82",

 "lastModified": "2020-08-03T17:58:29Z",

 "lastModifiedBy": "users:thy-one:admin@company.com",

 "path": "servers:us-east:server01",

 "version": "13"

}

Delinea DevOps Secrets Vault Administrator Guide Page 46 of 284

Usage

The flag --overwrite, if added to the above command would wipe-out the description and any other data KV pairs.
So this flag requires caution.

dsv secret update servers:us-east:server01 --data '{\"host\":\"unknown\"}' --overwrite

Search

You can search for Secrets by path, attribute, or id.

Some examples

dsv secret search server

dsv secret search --query server

dsv secret search -q aws:base:secret --search-links

dsv secret search --query aws --search-field attributes.type

dsv secret search --query 900 --search-field attributes.ttl --search-type number

dsv secret search --query production --search-field attributes.stage --search-comparison
equal

flags

--query, -qQuery of secrets to fetch (required)

--limit Set the maximum number of search results that will display per page (cursor)

--cursor Accepts the element used to get the next page of results

--search-comparison Specify the operator for advanced field searching, can be 'contains', 'equal', or 'begins_with'
Defaults to 'contains' (optional)

--search-field Advanced search on a secret field such as 'attribute.type' or 'description'. Defaults to 'path'.
(optional)

--search-links Find secrets that link to the secret path in the query (optional)

--search-type Specify the value type for advanced field searching, can be 'number' or 'string'. Defaults to 'string'
(optional)

--sort Change the sort order using asc or desc as values. Sort defaults to descending. (optional)

For a search where there are more results than returned in the first set, the API returns a cursor—a large piece of
text. You pass that back to get the next set of results.

For example, if the command dsv secret search -q admin --limit 10matched 12 Secrets with admin in the
name, the CLI would return the first 10 plus a cursor. To obtain the next two results, you would use this command:

Delinea DevOps Secrets Vault Administrator Guide Page 47 of 284

Usage

dsv secret search -q admin --limit 10 --cursor AFSDFSD...DKFJLSDJ=

Cursors may be lengthy:

dsv secret search -q resources --limit 10 --cursor
eyJpZCI6ImEwOTFjOWIzLWE4MmQtNGRiYy1hYThiLTYxMDY0NDZhZjA3MSIsInBhdGgiOiIiLCJ2ZXJzaW9uIjoidi
1jdXJyZW50IiwidHlwZSI6IiIsImxhdGVzdCI6MH0=

Describe

Use describe to show only metadata; you will not see the actual Secret value.

dsv secret describe --path us-east:server02

Read

The read command shows both the Secret data and metadata.

dsv secret read --path us-east:server02

Flags

--encoding or -e converts the output to JSON (default) or YAML.

--out or -o can send the read response to stdout (default), the clipboard (clip), or a file (file:<filename>)

--filter or -f filters to a specific KV pair. So data.password would only output the password value.

This example would send the password value only to the clipboard.

dsv secret read secret2 -o clip -f data.password

TIP: Although the -o flag allows redirection of output to files, it does not support directly assigning the output to an
environmental variable. However, you can use piping to achieve that outcome.

Piping refers to passing to a command a parameter value that is itself a command, or assigning to a variable a
value that is a command. In effect, piping means assigning as a value the means to obtain the value, rather than the
value itself.

export TEST=\$(dsv secret read --path us-east:server02)

or

Delinea DevOps Secrets Vault Administrator Guide Page 48 of 284

Usage

\$TEST=dsv secret read --path us-east:server02

Both examples use piping to assign to the variable TEST the value contained in the Secret, by making the secret
read command a parameter within a larger command or statement.

Once stored as the value of TEST, the data remain easily accessible:

echo \$TEST

As a well established computing technique of long standing, piping is not limited to Secrets. You can use piping to
store any output—search results, configuration states, and more.

Edit

Use edit to open the Secret data in the default text editor for bash, such as vi, nano, or Notepad.

n Saving in the editor updates the Secret in the vault, except in the case of Notepad, in which case the update
happens when you exit Notepad. Your interim saves are to the working copy.

dsv secret edit --path us-east:server02

Delete

To delete a Secret simply specify the path.

dsv secret delete --path us-east:server02

When you delete a Secret, it will no longer be usable. However, with the soft delete capacity of DSV, you have 72
hours to use the restore command to undelete the Secret. After 72 hours, the Secret will no longer be retrievable.

Should you want to perform a hard delete, precluding any restore operation, you can use the delete command's --
force flag.

Restore

Up to 72 hours after you delete a Secret (but not if you hard deleted it using the --force flag), you can restore it:

dsv secret restore --path us-east:server02

Do not confuse restore with rollback because the two have no relation. While restore un-deletes a deleted
Secret, restoring it to the condition it was in at the time of its deletion, rollback does not operate on deleted
Secrets. It simply sets a Secret back to an earlier version of itself.

Delinea DevOps Secrets Vault Administrator Guide Page 49 of 284

Usage

Rollback

A Secret that has had more than one version can be rolled back to an earlier version of itself:

dsv secret rollback --path us-east:server02 --version 2

If you do not include the --version flag, the Secret will roll back to the last version before the present version. By
serially issuing the rollback command without a version number, you could step back through the versions one at a
time.

Note that the rollback is non-destructive; technically, the command does not roll back so much as retrieve the
indicated version and duplicate it as a new version, which becomes the current version.

n If you used the --version flag to jump back three versions, you would not lose those three versions; they would
remain in place, with the version from three back now being replicated into a new version.

It is important to distinguish between the rollback feature, which relates to versions, and the restore feature,
which relates to the delete feature and has nothing to do with versions.

A deleted Secret can be restored up to 72 hours after it has been deleted (if it was not hard deleted using the --
force flag), after which it cannot be restored. Rollback does not change that in any way, because it cannot operate
on a deleted Secret.

If a deleted Secret is restored, Rollback can operate on it just as it would any other Secret.

User

For DSV, the term "user" refers to a security principal in the vault that can authenticate locally by a username and
password or can authenticate through a federated provider such as Amazon Web Services or Amazon Resource
Names.

Understanding Qualified Usernames

When a User or Role ties to a third-party provider, the name will be the fully qualified name to help distinguish
potentially duplicate User or Role names across different systems.

The name qualifier format provider name:local name means for example that the test-admin User will have the
username aws-dev:test-admin while the local User with username test-admin will not have a qualifier, so its
username will just be test-admin.

Commands that Act on Users

Command Action

change-password change a local User's password

create create a User in the vault

search find Users by username

Delinea DevOps Secrets Vault Administrator Guide Page 50 of 284

Usage

Command Action

read read a User's details

delete delete a User from the vault

restore restore a deleted User (if within 72 hours of deletion and not hard deleted)

update change a User's parameters

Examples

Change password

The change-password command, effective for local Users only, initiates an elemental password change sequence:

dsv auth change-password

Please enter your current password:

Please enter the new password:

Please enter the new password (confirm):

With a local User, correct entry for the current password prompt, and valid, matching responses to the first and
second prompts for the new password, the response will be a message that the password has been changed.

A Thycotic One Federated User must instead visit Thycotic One to change their password. Attempting to use the
change-password command within the CLI will fail.

Create

The create command takes several --parameters that specify foundational aspects of the User record.

Note: Only the username and password parameters are required. The command is used to updated
'password' and 'displayname'. Other parameters are ignored.

Parameter Content

--username local username; required; supports local authentication by username and password; need not
match that used by a federated authentication provider (if present)

--password password for local authentication by username and password

--provider matches the name attribute of the authentication provider in the settings section of the config

Delinea DevOps Secrets Vault Administrator Guide Page 51 of 284

Usage

Parameter Content

--external-id identifier recognized by third-party federated authentication providers, such as AWS or ARN

--displayname locally used display name for identifying users in DSV

Create a local User with username test-admin and password secret-password:

dsv user create --username test-admin --password secret-password

Create a User account for login by the AWS IAM test-admin User, with the account tied to an aws-dev account in
the configuration:

dsv user create --username test-admin --external-id arn:aws:iam::00000000000:user/test-
admin --provider aws-dev

Search

The search command locates Users by searching on their usernames. It accepts as a --query parameter the
username you provide, and searches for records with a matching username.

Note: Entering dsv user search, without parameters, produces a list of all users.

dsv user search --query test-admin

Output:

[

{

 "externalId": "arn:aws:iam::00000000000:user/test-admin",

 "provider": "aws-dev",

 "qualifier": "bgno6etchfrc72getij0",

 "userId": "dd632a7f-419f-400b-9e36-f67603bf934b",

 "userName": "test-admin"

 },

{

 "externalId": "",

 "provider": "",

 "userId": "8be917b3-9577-4dba-b39f-b531f27c1caa",

 "userName": "test-admin"

 }

]

Delinea DevOps Secrets Vault Administrator Guide Page 52 of 284

Usage

Read

The read command retrieves and displays information without changing anything.

Provide a fully qualified username and read the User's details:

dsv user read --username aws-dev:test-admin

Provide a full local username and read the User's details:

dsv user read --username test-admin

Delete

The delete command will remove records of both local Users and Users associated with third-party authentication
providers. In both cases, you must provide the fully qualified username.

Delete a third-party User identified by a fully qualified name:

dsv user delete --username aws-dev:test-admin

Delete a local User identified by the full local username:

dsv user delete --username test-admin

When you delete a User, it will no longer be usable. However, with the soft delete capacity of DSV, you have 72
hours to use the restore command to undelete the User. After 72 hours, the User will no longer be retrievable.

Should you want to perform a hard delete, precluding any restore operation, you can use the delete command's --
force flag.

Restore

Up to 72 hours after you delete a User (but not if you hard deleted it using the --force flag), you can restore it:

dsv user restore --username test-admin

Group

A Group facilitate the application of the same policies to all members of a given set of Users.

Delinea DevOps Secrets Vault Administrator Guide Page 53 of 284

Usage

Commands that Act on Groups

Command Action

create create a Group in the vault

add-members add members to a Group

read read a Group’s details

delete-members remove members from a Group

delete delete a Group

restore restore a Group (if within 72 hours of deletion and not hard deleted)

Examples

Create

File Example

This example command would create a Group named admins from a file data.json containing {"groupName":
"admins"} (or same with single-quote marks, for Powershell) and located in the tmp folder:

dsv group create --data @/tmp/data.json

{

 "groupName": "admins",

 "id": "2ce6754d-afbc-43a9-bfd4-3b7ec61170a0",

 "members": null,

 "metaData": null

}

Direct Data Example

This example would create a Group without referencing a file:

dsv group create --data {"groupName": "admins"}

{

 "groupName": "admins",

 "id": "2ce6754d-afbc-43a9-bfd4-3b7ec61170a0",

 "members": null,

 "metaData": null

}

Note that in Powershell, single quotes are required and double quotes escaped, like this:

Delinea DevOps Secrets Vault Administrator Guide Page 54 of 284

Usage

dsv group create --data '{\"groupName\": \"admins\"}'

Wizard Example

A group can also be created using the wizard:

dsv group create

Find Group Membership

To see what Groups the user Billy belongs to, you would use:

dsv user groups --username billy

{

 "groups": [

{

 "groupName": "admins"

 }

],

 "name": "billy"

}

Add-Members

Add members to a Group similarly to this example, wherein the file newmember.json contains: {"memberNames": [
"billy",”larry’]}

dsv group add-members --group-name admins --data '@/tmp/newmember.json

{

 "memberNames": ["billy", "larry"]

}

Read

This example demonstrates how to read a Group:

dsv group read --group-name admins

{

 "groupName": "admins",

 "id": "2dc756d6-ba71-44e9-94e9-f822e0f7ca3f",

 "members": ["larry"],

 "metaData": null

}

Delinea DevOps Secrets Vault Administrator Guide Page 55 of 284

Usage

Update | Assign Group to Policy

This example would assign the admins Group to an existing policy at the path secrets:servers:us-west:

dsv policy update --actions "<.*>" --subjects groups:admins --path secrets/servers/us-west

Note that you can designate paths with either of the colon : or forward slash / characters.

Delete-Members

To remove members from a Group, follow this example, wherein deletemembers.json contains: {"memberNames":
["billy"]}

dsv group delete-members --group-name admins --data @/tmp/deletemembers.json

<no response>

Note that this does not delete the user objects that were members. It simply makes those user objects no longer
members of the Group.

Delete

To delete a Group, you would follow this example:

dsv group delete --group-name admins

<no response>

When you delete a Group, it will no longer be usable. However, with the soft delete capacity of DSV, you have 72
hours to use the restore command to undelete the Group. After 72 hours, the Group will no longer be retrievable.

Should you want to perform a hard delete, precluding any restore operation, you can use the delete command’s --
force flag.

Restore

Up to 72 hours after you delete a Group (but not if you hard deleted it using the --force flag), you can restore it:

dsv group restore --group-name admins

Role

With DSV, the term “role” describes a security principal in the vault that ties to third-party providers or client
credentials for granting permissions.

Delinea DevOps Secrets Vault Administrator Guide Page 56 of 284

Usage

Commands that Act on Roles

Command Action

create create a Role in the vault

search find Roles by Role name

read read a Role’s details

update upload a superseding Role

delete delete a Role from the vault

restore restore a deleted Role to the Vault (if within 72 hours of deletion and not hard deleted)

Examples

Create

The create command takes several --parameters that spec key aspects of the Role record.

Parameter Content

--desc description of the Role

--name name of the Role

--provider matches the name attribute of the authentication provider in the settings section of the config

--external-id identifier recognized by third-party federated authentication providers, such as AWS or ARN

Create a local Role with the name test-role:

dsv role create --name test-role

Search

The search command locates Roles by searching on their Role names. It accepts as a --query parameter the Role
name you provide, and searches for records with a matching Role name.

Search for a Role named dev-admin:

dsv role search --query dev-admin

Or simply:

Delinea DevOps Secrets Vault Administrator Guide Page 57 of 284

Usage

dsv role search dev-admin

You can also specify the maximum number of search results per page (limit) and a cursor to get the next batch of
results.

dsv role search --query dev-admin --limit 2 --cursor
eyJpZCI6ImZmZjZjODUxTJ2ZXJzaW9uIjo50IiwidHiJ9

Read

The read command retrieves and displays information without changing anything.

Provide a Role name and read the Role’s details in beautified form:

dsv role read --name test-role -b

Update

Use update to change a Role’s data.

Note that update rewrites the entire set of Role data, even if only a single field has changed.

Provide a Role name and update the Role to replace the description field’s value:

dsv role update --name test-role --desc "a new description"

Delete

The delete command will remove Roles.

Provide a Role name and delete the Role:

dsv role delete --name test-role

When you delete a Role, it will no longer be usable. However, with the soft delete capacity of DSV, you have 72
hours to use the restore command to undelete the Role. After 72 hours, the Role will no longer be retrievable.

Should you want to perform a hard delete, precluding any restore operation, you can use the delete command’s --
force flag.

Restore

Up to 72 hours after you delete a Role (but not if you hard deleted it using the --force flag), you can restore it:

Delinea DevOps Secrets Vault Administrator Guide Page 58 of 284

Usage

dsv role restore --name test-role

Client

Client credentials enable applications to authenticate as the Role assigned to the client record.

Commands that Act on Clients

Command Action

create create a client in the vault

search find clients by Role name

read read a client’s details

delete delete a client from the vault

Examples

Create

The create command accepts as its --role parameter a fully qualified Role name, and creates a client credential
assigned to that Role.

dsv client create --role app-role

The output will include a clientId and clientSecret suitable for use during CLI installation, or within REST calls to
authenticate as the Role assigned to the clientId.

{

 "clientId": "01234567-abcd-4eb9-9df4-6f1fea7d9298",

 "clientSecret": "aaabbb777DwTLkdzWkL18UF9blycz3r9yfRhQTYICFc",

 "created": "2022-09-16T09:53:50Z",

 "createdBy": "users:bright",

 "id": "00000000-0123-0123-0123-0123456789ab",

 "role": "app-role",

 "url": false

}

NOTE: The client Secret is available only when you create the client. If the Secret is lost, delete the client and
create a new one.

Ephemeral Credentials

Client credentials can be made temporary by using the --uses and --ttl flags.

Delinea DevOps Secrets Vault Administrator Guide Page 59 of 284

Usage

--uses determines the number of times the client credential can be read. If set to 0, it can be used infinitely. Uses
defaults to 0.

--ttl determines long until the client credential expires. If set to 0, it can be used indefinitely. Ttl defaults to 0.

Search

The search command accepts as its --query parameter the name of a Role, and searches for clients having that
Role.

dsv client search --query dev-role

or

dsv client search dev-role

Read

The read command accepts a client ID as a parameter and returns the details for the given client. As with most
commands, remember that you can apply flags to beautify, redirect, or reformat the returned material.

dsv client read --client-id 01234567-abcd-4eb9-9df4-6f1fea7d9298

Delete

The delete command accepts a client ID as a parameter and deletes from the vault the indicated client.

dsv client delete --client-id 01234567-abcd-4eb9-9df4-6f1fea7d9298

When you delete a Client, it will no longer be usable. However, with the soft delete capacity of DSV, you have 72
hours to use the restore command to undelete the Client. After 72 hours, the Client will no longer be retrievable.

Should you want to perform a hard delete, precluding any restore operation, you can use the delete command’s --
force flag.

Bootstrapping

There will be times when machines or applications will require access to DSV to get started, but you can't (or don't
want) to hardcode the client secret. In this case, we can create the client ID and get a one-time use URL. When the
URL is accessed, then the corresponding client secret will be created and returned. The URL will no longer be valid
after the initial use, so if the intended machine or application gets an error "url already used" then there should be
an alarm to investigate.

First create the Client ID and URL:

Delinea DevOps Secrets Vault Administrator Guide Page 60 of 284

Usage

dsv client create --role <role> --url --url-ttl <ttl in seconds>

Where "role" is a Role created earlier and is attached to a Policy to provide the proper permissions.

--url if present tells DSV to create a one-time use URL instead of a Client Secret right now.

--url-ttl is the time to live of the URL in seconds. If it is not accessed in that time frame, then the URL will
become invalid.

Note: If a TTL is set for both the URL and the underlying client credentials, then the timer for the client
credentials will not start until the URL is accessed.

The result will look something like this:

{

 "clientId": "01234567-abcd-4eb9-9df4-6f1fea7d9298",

 "created": "2022-09-16T11:04:45Z",

 "createdBy": "users:admin@company.com",

 "id": "c6bae4ae-469f-4ea7-a72a-8f338fee4867",

 "role": "app-role",

 "url": true,

 "urlExpires": "2022-09-16T12:04:45Z",

 "urlPath": "https://company.secrestvaultcloud.com/v1/clients/bootstrap/01234567-abcd-
4eb9-9df4-6f1fea7d9298",

 "urlTTL": 3600

}

Then the machine or application can access that urlpath for the Client Secret. For Example, using CURL (or Invoke-
RestMethod for Powershell):

curl https://company.secrestvaultcloud.com/v1/clients/bootstrap/01234567-abcd-4eb9-9df4-
6f1fea7d9298

With a result containing the Client Secret:

{

 "id": "c6bae4ae-469f-4ea7-a72a-8f338fee4867",

 "clientId": "01234567-abcd-4eb9-9df4-6f1fea7d9298",

 "clientSecret": "abcdef0123456789ALGewTlxf4Fdo-cTkS_l_o0ki8w",

 "role": "app-role",

 "url": true,

 "urlExpires": "2022-09-16T12:04:45Z",

 "accessed": "2022-09-16T11:08:11Z",

 "created": "2022-09-16T11:04:45Z",

 "createdBy": "users:admin@company.com"

}

Delinea DevOps Secrets Vault Administrator Guide Page 61 of 284

Usage

If the URL is accessed a second time, then the response will contain: {"code":400,"message":"url has

already been used"}

Policy

Policies control access to resources and authorization to act on resources, such as to change them, via
permissions. DevOps Secrets Vault permissions are foundational for proper operation and security.

Commands that Act on Policy

Command Action

create create a policy in the vault

edit modify a policy using the OS’s default command-line editor, such as VI, nano, or Notepad

read view a policy details

update policy updates are all or nothing, so required fields must be included in the update and if optional
fields are not included, they are deleted or go to default

rollback for a policy that has had more than one version, roll back to an earlier version

delete delete a policy

search search for a policy

restore restore a policy (if within 72 hours of deletion and not hard deleted)

To get a json encoded list of all Policies, use:

dsv policy search

You can add a query item to search Policies by path:

dsv policy search secrets/databaseordsv policy search --query secrets/databases

A typical Policy looks like this:

created: '2019-09-24T18:12:26Z'

createdBy: users:thy-one:admin@company.com

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

lastModified: '2019-09-24T20:13:53Z'

lastModifiedBy: users:thy-one:admin@company.com

path: secrets:servers:us-west

permissionDocument:

- actions:

 - read

Delinea DevOps Secrets Vault Administrator Guide Page 62 of 284

Usage

 conditions: {}

 description: ''

 effect: allow

 id: xxxxxxxxxxxxxxxxxxxx

 meta:

 resources:

 - secrets:servers:us-west:<.*>

 subjects:

 - groups:west admins

version: '5'

A policy contains a list of permissions which define access to resource paths. The policy itself has a top level path
which is the identifier of the policy as well. The policy path is used to validate the resource paths in the permission
documents. This allows administrators to delegate user ownership of policies without allowing self elevation
through modifying the policy to a higher level path.

For example, the policy above has a path of secrets:servers:us-west. Permissions can be created for
resources paths like secrets:servers:us-west, secrets:servers:us-west:<.*>, or secrets:servers:us-
west:prod:<.*>. A permission document cannot be created on the policy to allow users to manage users, i.e. with
a resource path of users:<*>. Because the policy path must be the root of any resource paths in its permission
documents.

The one exception is policy delegation. An admin can create a policy and add a resource path for
config:policies:secrets:servers:us-west to allow users to manage the policy. An example of this is below

The permission document has the following elements:

Element Definition

actions a list of possible actions on the resource including create, read, update, delete, list, and assign
(regular expressions and list supported)

conditions an optional CIDR range to lock down access to a specific IP range

description human friendly description of the Policy intent

effect whether the Policy is allowing or preventing access; valid values are allow and deny

id system-generated unique identifier to track changes to a particular Policy

resources the resource path defining the targets to which the permissions apply; a resource path prefixes
the entity type (secrets, clients, roles, users, config, config:auth, config:policies, audit) to a colon
delimited path to the resource.

subjects the Policy provides authorization to these entries. Includes Users, Roles, and Groups

Policy Evaluation

To correctly evaluate permission Policies, you must know the rules that apply to permissions.

Delinea DevOps Secrets Vault Administrator Guide Page 63 of 284

Usage

n Values for permission properties may optionally be specified using a regular expression enclosed in angle
brackets <>. For example,

a subject entry could be written as ["users:<bob|alice>"]. Here, users bob and alice are specified. A longer
alternative would be

["users:bob", "users:alice"].

n Permissions are cumulative.

l If there is a top level permission for the path secrets:servers:<.*> that grants a User write access, then even
if they are only granted read access at the resource path secrets:servers:webservers:<.*>, they will still have
write access due to the top level implicit match.

n effect can either be allow or deny. If not specified, it defaults to allow

n An explicit deny trumps an explicit or implicit allow.

n At least one action must be listed in an array. Actions are explicit. A User assigned update and read will not
automatically have create for the resource path.

n For actions, the wildcard form <.*> replaces any other values, since it is an all-inclusive form. A wildcard could
be written as a standard <.*> form, but also as .* or * for convenience. The backend automatically converts it
to <.*>.

n Invalid actions are not allowed, unless there is a wildcard element. Valid actions are create, read, update,

delete, assign, list.

n The list action has a special behavior.

l First, list (search) is global—it runs across all items of an entity (any of the resources like Users, Roles,
Groups, etc), not limited to paths and sub-paths.

l Second, to grant a User an ability to search entities via list, use the root of the entity if you want list to include
other entities and actions within the same Policy. The root entity, for example, is secrets, with no other
characters following.

l See the example on Search

n At least one subject must be listed in an array. A prefix is required. For example, a valid subject is "users:bob".
Valid prefixes are groups, roles, users.

n Subjects and actions are automatically converted to lower case upon save.

Policy Examples

When creating or updating a Policy, a workflow can be started using dsv policy create or dsv policy update

without flags. This will start step-by-step questions to guide you though the process. However, in the following
examples, the direct command will be shown.

Deny Access at a Lower Level

Case: Subjects need access to Secrets for an environment, but that logical environment contains a more restricted
area.

Solution: Two Policies. The first provides the Subjects (developer1@thycotic.com|developer2@thycotic.com)
general access to the Secrets resources at the path secrets:servers:us-east-1:<.*>.

Delinea DevOps Secrets Vault Administrator Guide Page 64 of 284

Usage

The direct command to create this policy is

dsv policy create --path secrets:servers:us-east-1 --actions '<.*>' --desc 'Developer
Policy' --subjects 'users:<developer1@thycotic.com|developer2@thycotic.com>' --effect
allow

With the trickiest part being to remember the "secrets" prefix on the path.

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-one:admin@company.com

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

lastModified: '2020-07-16T20:13:53Z'

lastModifiedBy: users:thy-one:admin@company.com

path: secrets:servers:us-east-1

permissionDocument:

- id: xxxxxxxxxxxx

description: Developer Policy.

subjects:

- users:<developer1@thycotic.com|developer2@thycotic.com>

actions:

- "<read|delete|create|update>"

effect: allow

resources:

- secrets:servers:us-east-1:<.*>

The second Policy adds a specific path at a level lower (secrets:servers:us-east-1:production) to
explicitly deny access to developer1@thycotic.com, as in the following example.

The command to create this policy is

dsv policy create --path secrets:servers:us-east-1:production --actions '<.*>' --desc
'Developer Deny Policy' --subjects 'users:<developer1@thycotic.com>' --effect deny

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-one:admin@company.com

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

lastModified: '2020-07-16T20:13:53Z'

lastModifiedBy: users:thy-one:admin@company.com

path: secrets:servers:us-east-1:production

permissionDocument:

- id: xxxxxxxxxxxx

description: Developer Deny Policy.

subjects:

- users:<developer1@thycotic.com>

actions:

- "<.*>"

effect: deny

Delinea DevOps Secrets Vault Administrator Guide Page 65 of 284

Usage

resources:

- secrets:servers:us-east-1:production:<.*>

Allow Users to Assign Specific Roles to New Clients

Case: A User needs to assign Roles when they create client credentials, but must not be able to self-elevate by
assigning an admin level Role.

Solution: Use a naming convention when creating Roles and specify a prefix with a wildcard to only allow Users to
assign Roles that match the naming convention, as modeled in the following example.

The command to run this is

dsv policy create roles:dev-role --subjects users:developer@thycotic.com,roles:onboarding-
role --desc 'Role Assignment' --resources 'roles:dev-role-<.*>' --actions assign

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-one:admin@company.com

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

lastModified: '2020-07-16T20:13:53Z'

lastModifiedBy: users:thy-one:admin@company.com

path: roles:dev-role

permissionDocument:

- id: xxxxxxxxxxxx

description: Limited Role Assignment Policy.

subjects:

- users:developer@thycotic.com

- roles:onboarding-role

actions:

- assign

effect: allow

resources:

- roles:dev-role-<.*>

Allow User2 Access to User1's Home Vault

Case User2 need access to a secrets space (folder) in User1's Home Vault

Solution: Have an Admim create a policy that enables access. In this example, we assume User1 has a secret in
their home vault at: databases/mongo/primary and wants to give User2 read rights to anything under databases, but
not their entire Home vault

The command the Admin will run to create the policy would be:

dsv policy create --path home:users:user1:databases --actions '<read>' --desc 'User2 to
access User1 Home/databases' --subjects 'users:User2' --effect allow

Notice the path starts with home:users:<username>

Delinea DevOps Secrets Vault Administrator Guide Page 66 of 284

Usage

When User1 is authenticated and needs to access the secret the command would be dsv home read

databases/mongo/primary

When User2 is authenticated and needs to access the secret the command would be dsv home read

users:User1/databases/mongo/primary

Enable a Group to search Secrets

Case: Allow a Group to search secrets

Solution: Under the Resource entity, Secrets, enable the Group named "admins".

The command to create this policy is

dsv policy create secrets --subjects groups:admins --desc 'secret search' --resources
secrets --actions list

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-one:admin@company.com

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

lastModified: '2020-07-16T20:13:53Z'

lastModifiedBy: users:thy-one:admin@company.com

path: secrets

permissionDocument:

- actions:

 - list

 conditions: {}

 description: secret search

 effect: allow

 id: xxxxxxxxxxxx

 meta: null

 resources:

 - secrets

 subjects:

 - groups:admins

version: "0"

Note: Searching secrets only enables the users to see the path, but not the actual data in the secret. That would
require Read access at the proper path.

Allow Users to List Specific Entities

Case: A User needs to search across all items but only needs full read access on specific ones

Solution: Add a list action and the root of the entity used for searching.

In the example below, roles is the entity for reading and searching (list action). In the resources section, roles:dev-
role-<.>* is used for reading, while roles is used for searching.

The command to create this policy is

Delinea DevOps Secrets Vault Administrator Guide Page 67 of 284

Usage

dsv policy create roles --subjects users:developer@thycotic.com,roles:onboarding-role --
desc 'Role Searching' --resources 'roles:dev-role-<.*>,roles' --actions read,list

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-one:admin@company.com

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

lastModified: '2020-07-16T20:13:53Z'

lastModifiedBy: users:thy-one:admin@company.com

path: roles

permissionDocument:

- actions:

 - read

 - list

 conditions: {}

 description: Role Searching

 effect: allow

 id: xxxxxxxxxxxx

 meta: null

 resources:

 - roles:dev-role-<.*>

 - roles

 subjects:

 - users:developer@thycotic.com

 - roles:onboarding-role

version: "0"

The syntax of the latter is important. In general, the root form of an entity has no * after the entity name, or anything
besides the name.

Delegate Policy Authority

Case: An admin wants to delegate control to various team leads at a sub-path.

Solution: Under Resources, add config:policies followed by the resource path.

The command to create this policy is

dsv policy create secrets:servers --actions create,read,update,delete --resources
'secrets:servers:<.*>,config:policies:secrets:servers:<.*>' --subjects
'users:<developer1@thycotic.com|developer2@thycotic.com>'

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-one:admin@company.com

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

lastModified: '2020-07-16T20:13:53Z'

lastModifiedBy: users:thy-one:admin@company.com

path: secrets:servers

Delinea DevOps Secrets Vault Administrator Guide Page 68 of 284

Usage

permissionDocument:

- actions:

 - create

 - read

 - update

 - delete

 conditions: {}

 description: ""

 effect: allow

 id: xxxxxxxxxxxx

 meta: nullb

 resources:

 - secrets:servers:<.*>

 - config:policies:secrets:servers:<.*>

 subjects:

 - users:<developer1@thycotic.com|developer2@thycotic.com>

version: "0"

Now the developers can create Policies below the secrets:servers: path; for example, developer1 can create
Policies for secrets:servers:webservers and developer2 can do the same at secrets:servers:databases.

Read Audits

Case: A user needs to be able to read audit records

Solution: Add a policy for the audit resource path

The command to create this policy is

dsv policy create audit --actions list --resources audit --subjects
users:developer1@thycotic.com

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-one:admin@company.com

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

lastModified: '2020-07-16T20:13:53Z'

lastModifiedBy: users:thy-one:admin@company.com

path: audit

permissionDocument:

- actions:

 - list

 conditions: {}

 description: ""

 effect: allow

 id: xxxxxxxxxxxx

 meta: null

 resources:

 - audit

 subjects:

Delinea DevOps Secrets Vault Administrator Guide Page 69 of 284

Usage

 - users:developer1@thycotic.com

version: "0"

Manage An Auth Provider

Case: A user needs to update a single auth provider

Solution: Add a policy for the config:auth provider path

The command to create this policy is

dsv policy create config:auth:gcp-dev --actions read,update --resources config:auth:gcp-
dev --subjects users:developer1@thycotic.com

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-one:admin@company.com

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

lastModified: '2020-07-16T20:13:53Z'

lastModifiedBy: users:thy-one:admin@company.com

path: config:auth:gcp-dev

permissionDocument:

- actions:

 - read

 - update

 conditions: {}

 description: ""

 effect: allow

 id: xxxxxxxxxxxx

 meta: null

 resources:

 - config:auth:gcp-dev

 subjects:

 - users:developer1@thycotic.com

version: "0"

Create Reports

Case: A user needs to be able to read reports

Solution: Add a policy for the reports:query resource path

The command to create this policy is

dsv policy create --path report:query --subjects users:user1@organization.com --actions
create --effect allow --resources report:query

Delinea DevOps Secrets Vault Administrator Guide Page 70 of 284

Usage

{

 "path": "report:query",

 "permissionDocument": [

{

 "actions": ["create"],

 "conditions": {},

 "description": "",

 "effect": "allow",

 "id": "c23f8...h0hfgg",

 "meta": null,

 "resources": ["report:query"],

 "subjects": ["users:user1@organization.com"]

 }

],

 "version": "0"

}

Admin Policy and Auth Providers

In this section we will

n Define the Default Admin Policy

n Show settings for third-party authentication providers including Thycotic One, AWS, Azure, or GCP.

Commands that Act on Configuration

Command Action

read view the current configuration

edit modify the configuration in an OS-native text editor such as VI, nano, or Notepad

update upload a superseding configuration document

Read

To read out the current config, which contains the Admin policies

dsv config read

Note: In this command the --encoding yaml flag could be used to provide the output in YAML format.

In response, you should see a block of code containing the Default Admin Policy, similar to this.

{

 "created": "2019-09-18T18:38:49Z",

Delinea DevOps Secrets Vault Administrator Guide Page 71 of 284

Usage

 "createdBy": "system",

 "lastModified": "2020-07-30T23:56:56Z",

 "lastModifiedBy": "users:thy-one:admin@company.com",

 "permissionDocument": [

{

 "actions": ["<.*>"],

 "conditions": {},

 "description": "Default Admin Permissions",

 "effect": "allow",

 "id": "bm17jee33m1c72u313tg",

 "meta": null,

 "resources": ["<.*>"],

 "subjects": ["users:<thy-one:admin@company.com>"]

 },

{

 "actions": ["<.*>"],

 "conditions": {},

 "description": "Default Deny Home Permissions",

 "effect": "deny",

 "id": "bsd72rfe1vkc72up3o1g",

 "meta": null,

 "resources": ["home:<.*>"],

 "subjects": ["users:<thy-one:admin@company.com>"]

 }

],

 "tenantName": "company",

 "version": "1"

}

The initial User possesses full administrator rights and is federated through Thycotic One. This is indicated by the
thy-one prefix on the users's email. This enables self-service password reset through Thycotic One.

In keeping with best practices, you should set up a less privileged User policy for routine use. The highly privileged
initial Admin account should be used only when a task requires its privileges.

The first section of the Admin policy with the description "Default Admin Permission" is what allows the Admin full
rights to everything in DSV.

The second section with the description "Default Deny Home Permissions" denies the Admin permission to access
the Home feature where users have a place for their own secrets. If required, the Admin can remove his/her name
and then get access to the Home secrets (API only in Beta)

Edit

Note: Delinea recommends against changing the Default Admin Policy other than to add a User as a back-
up admin. Even then, best practices would be to create a separate policy for specific access for Users.

Note: For adding and editing policies beyond the Default Admin Policy, see the Policy article.

Note: Delinea recommends against changing the Thycotic One provider because it provides for the initial
User and any others you add that federate to Thycotic One. However, you can add providers.

Use edit to open your configuration in the OS’s default editor (typically VI, nano, or Notepad).

Delinea DevOps Secrets Vault Administrator Guide Page 72 of 284

Usage

dsv config edit --encoding YAML

The editor directly updates the configuration in the vault when you save your work.

Update

Use update to change a config by uploading JSON data.

The value of the --data parameter for update accepts JSON entered directly at the command line, or the path to a
JSON file.

dsv config update --data '{"tenantName":"company", ...}'

or

dsv config update --data @configfilename.json

Grant Admin Access Rights to All Home Vaults

If it is rquired that the Admin have access to all individual Home vaults, then edit the Home Vault Permissions and
change the effect field to "allow"

dsv config edit --encoding YAML

The editor will open the OS default editor and you can modify the effect field.

Authentication Providers

Add an Authentication Provider

The general command to add an Authentication Provider is:

dsv config auth-provider create --name <name> --type <type> --<properties>

in which:

n name is the friendly name used in DSV to reference this provider. It is separate from type because it allows
multiple auth providers of the same type (for example several AWS accounts).

n type is the authentication provider type; valid values are aws, azure, gcp and thycoticone

n properties are configuration settings specific to the authentication provider

Delinea DevOps Secrets Vault Administrator Guide Page 73 of 284

Usage

l AWS flag is --aws-account-id

l Azure flag is --azure-tenant-id

l Thycotic One requires three flags --baseURI, --clientID, and --clientSecret

l GCP has two options for federation, GCE metadata and service accounts.

o For GCE metadata, use --gcp-projcet-id
o Flags are not provided for a service account so a file is required.

Note: The account identifiers for third-party authentication are a top level setting that allow you or other
Users to authorize specific security principals within that account. They do not automatically grant access
to any User or Role within the provider.

See the Authentication section for examples of using AWS, Azure, GCP, and Thycotic One for authentication.

To see a list of all Auth-providers:

dsv config auth-provider search

Initially, your tenant will only have a Thycotic One connection

{

 "created": "2019-09-18T18:38:49Z",

 "createdBy": "",

 "id": "bm17jee33m1c72u313u0",

 "lastModified": "2020-05-10T02:25:04Z",

 "lastModifiedBy": "users:admin@company.com",

 "name": "thy-one",

 "properties": {

 "baseUri": "https://login.thycotic.com/",

 "clientId": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

 "clientSecret": "xxx",

 "sendWelcomeEmail":false

 },

 "type": "thycoticone",

 "version": "1"

}

Edit an Authentication Provider

Make changes to an authentication provider using the edit command and the name (path) of the authentication
provider:

dsv config auth-provider edit <name>

Delinea DevOps Secrets Vault Administrator Guide Page 74 of 284

Usage

Audit Command

DSV audit logs can be searched with the dsv audit command followed by the required --startdate YYYY-MM-

DD flag.

Flags

Flag Function Example

--actions Searches within audit logs for a specific CRUD
action. Use the values: POST, GET, PUT,
PATCH, DELETE. If omitted, all actions will
return.

--actions PUT

--cursor A cursor value is given when the number of
events returned exceed the display limit. Include
the returned cursor value in the next query to
continue viewing the log. See below for example
usage.

--enddate Along with --startdate, sets the time frame for
search. If omitted, enddate will return all events
from the startdate to the search date. Make sure
to use the YYYY-MM-DD format. You must
include a zero before single-digit dates.

--enddate 2021-02-01

--limit Sets the maximum number of results per cursor.
If omitted, limit will default to 25.

--limit 10

--path Searches for actions within a given path. If
omitted, all paths will return.

--principal Searches for a specific principal or user within
DSV. If omitted, all principals will return.

--principal users:thy-
one:your.username@organization.com

--startdate Along with --enddate, sets the time frame for
search. Make sure to use the YYYY-MM-DD
format. You must include a zero before single-
digit dates. This flag is required.

--startdate 2020-08-21

Usage Examples

Basic Unfiltered Query

dsv audit --startdate 2021-01-01

An audit log of all actions in every path from January 1st, 2021 to the present date is returned.

Delinea DevOps Secrets Vault Administrator Guide Page 75 of 284

Usage

Simple Limited Query

dsv audit --startdate 2021-01-01 --enddate 2021-02-02 --limit 5

An audit log of the most recent five actions in every path from January 1st, 2021 to February 2nd, 2021 is returned.

Cursor Query

If the logs are longer than the limit, the CLI will return a long --cursor string. Copy the cursor value and repeat the
previous input with the addition of --cursor <returned string> to continue listing the logs.

Initial Input Returning a Cursor Value

dsv audit --startdate 2021-01-01 --enddate 2021-02-02 --limit 2

Example Output Returning Cursor

"cursor": "MGJiYmYxZmItZjlhMS00NjY1LWEyN2YtNDgwM2E3MjExMjRh.AT0HNoBK4m4rE_
XkhWoXImQyjbX8hrSHQiXM06qRIQ8KgZAU21Kdb-bmur6kK85N34z2e5LEhSoEIAV3a5bhgkFbE5a9W78iwg",

 "data": [

{

 "action": "POST",

 "created": "2021-01-26T16:48:53.502387353Z",

 "id": "",

 "ipaddress": "11.111.11.***",

 "message": "user attempting login: example@thycotic.com",

 "path": "token",

 "principal": "",

 "principalItemId": "",

 "status": 0,

 "tenant": "tenantIDstring",

 "tenantName": "yourorg"

 },

{

 "action": "POST",

 "created": "2021-01-26T16:48:53.839114046Z",

 "id": "",

 "ipaddress": "11.111.11.***",

 "message": "unable to find provider with specified name.",

 "path": "token",

 "principal": "",

 "principalItemId": "",

 "status": 0,

 "tenant": "tenantIDstring",

 "tenantName": "yourorg"

Delinea DevOps Secrets Vault Administrator Guide Page 76 of 284

Usage

Example Input with Cursor

dsv audit --stardate 2021-01-01 --enddate 2021-02-02 --limit 2 --cursor
MGJiYmYxZmItZjlhMS00NjY1LWEyN2YtNDgwM2E3MjExMjRh.AT0HNoBK4m4rE_
XkhWoXImQyjbX8hrSHQiXM06qRIQ8KgZAU21Kdb-bmur6kK85N34z2e5LEhSoEIAV3a5bhgkFbE5a9W78iwg

Report Command

The report command acts on secrets and groups. All users can generate a report containing their own secrets and
groups. Only administrators and users with a policy allowing access to reports/query can generate a report for
other users. See Create Reports in policy for an example.

Secret Reporting

Use the secret subcommand to retrieve a list of secrets and secret actions available to a user, group, or role.
Running a secret report without flags will generate a list of every secret and action available to the user running the
query. Secrets are sorted by the most recent modification.

Command/Flags Function Example

report secret Retrieves the secrets and secret actions
available to a user, group, or role.

dsv report secret

--group Searches for secrets available to a specified
group.

dsv report secret --group
engineers

--path Searches for available secrets within a specified
path.

dsv report secret --path us-
east/server01:<.*>

--role Searches for secrets available to a specified role. dsv report secret --role
automation

--user Searches for secrets available to a specified
user.

dsv report secret --user john

--limit Sets the number of retrieved secrets. dsv report secret --limit 25

Example Secret Queries

Personal Secret Query

The following input will return a list of the secrets available to the user performing the query.

Input:

dsv report secret

Output:

Delinea DevOps Secrets Vault Administrator Guide Page 77 of 284

Usage

{

 "data": {

 "UserName": "user",

 "Provider": "thy-one",

 "Created": "2021-01-11T16:07:59Z",

 "LastModified": "2021-01-11T16:07:59Z",

 "CreatedBy": "",

 "LastModifiedBy": "",

 "Version": "0",

 "Secrets": [

{

 "Actions": ["<.*>"],

 "ID": "",

 "Path": "us-east/server01",

 "Created": "2021-03-25T13:12:13Z",

 "LastModified": "2021-03-25T13:12:13Z",

 "LastModifiedBy": "users:thy-one:user@organization.com",

 "Version": "0"

 }

],

 "Home": []

 }

}

User Secret Query

The following input will return a list of secrets available to the specified user. Note that this query is only available to
administrators and users with reports/query permission.

Input:

{

 dsv report secret --user john

}

Output:

{

 "data": {

 "UserName": "john",

 "Provider": "thy-one",

 "Created": "2021-01-11T16:07:59Z",

 "LastModified": "2021-01-11T16:07:59Z",

 "CreatedBy": "",

 "LastModifiedBy": "",

 "Version": "0",

 "Secrets": [

{

Delinea DevOps Secrets Vault Administrator Guide Page 78 of 284

Usage

 "Actions": ["<.*>"],

 "ID": "",

 "Path": "us-east/server01",

 "Created": "2021-03-25T13:12:13Z",

 "LastModified": "2021-03-25T13:12:13Z",

 "LastModifiedBy": "users:thy-one:john@example.com",

 "Version": "0"

 }

],

 "Home": []

 }

}

Group Reporting

Use the group subcommand to retrieve a list of groups associated with a user or role. Running a group report
without flags will generate a list of groups associated with the user running the query.

Command/Flags Function Example

report group Retrieves a list of groups associated with a user or
role.

dsv report group

--role Searches for the groups associated with a
specified role.

dsv report group --role
automation

--user Searches for the group memberships of a
specified user.

dsv report group --user john

--limit Sets the number of retrieved groups. dsv report group --limit 25

Example Group Queries

Personal Group Query

The following input will return a list of the groups to which the user performing the query belongs.

Input:

dsv report group

Output:

{

 "data": {

 "UserName": "user",

Delinea DevOps Secrets Vault Administrator Guide Page 79 of 284

Usage

 "Provider": "thy-one",

 "Created": "2021-01-11T16:07:59Z",

 "LastModified": "2021-01-11T16:07:59Z",

 "CreatedBy": "",

 "LastModifiedBy": "",

 "Version": "0",

 "group": [

{

 "Name": "accountadmins",

 "Since": ""

 }

]

 }

}

User Group Query

The following input will return a list of groups to which the specified user belongs. Note that this query is only
available to administrators and users with reports/query permission.

Input:

{

 dsv report group --user john

}

Output:

{

 "data": {

 "UserName": "john",

 "Provider": "thy-one",

 "Created": "2021-01-11T16:07:59Z",

 "LastModified": "2021-01-11T16:07:59Z",

 "CreatedBy": "",

 "LastModifiedBy": "",

 "Version": "0",

 "group": [

{

 "Name": "engineers",

 "Since": ""

 }

]

 }

}

Delinea DevOps Secrets Vault Administrator Guide Page 80 of 284

Usage

Home Vault

Home provides Users with a separate space to store secrets. No Users can access another User's Home values.
As soon as a User is created in DSV, they are given access to their own Home vault without an explicit policy
granting access.

The Home value will list a path like users:<username>:<secretname> DSV will determine which username based
on whomever authenticated. So if joesmith@company.com authenticates, then a creates a Home value, that vaule
will be in Joe Smith's Home vault.

Even the Admin does not have access by default, though they can give themselves access for "breakglass"
purposes. If the admin is given access to read users' Home values, it can only be done through the API in the Beta
version.

Home follows the familiar syntax: dsv home (command) (flags and parameters) with the commands being
create, read, delete, update, describe, edit, search The difference between read and describe is
that read shows both data and metadata, while describe only shows metadata.

Examples

Create

The create command uses the --data flag to pass data into the secret. This flag accepts JSON entered directly
into the command line or by a path (absolute or relative) to a JSON file.

Bash examples

dsv home create secret1 --data '{"username":"administrator","password":"bash-secret"}'

dsv home create secret2 --data @/home/user/secret.json

dsv home create secret2 --data @../secret.json

Powershell examples

PS C:> dsv home create --path secret1 --data '
{\"username\":\"administrator\",\"password\":\"powershell-secret\"}'

dsv home create secret2 --data '@/home/user/secret.json'

dsv home create secret2 --data '@../secret.json'

Delinea DevOps Secrets Vault Administrator Guide Page 81 of 284

Usage

CMD Examples

PS C:> dsv home create secret1 --data "{\"username\":\"administrator\",\"password\":\"cmd-
secret\"}"

dsv home create secret2 --data @/home/user/secret.json

dsv home create secret2 --data @../secret.json

The --attributes flag can be used to add user-defined metadata in the same way that data is added.

The --desc flag can be used to add a simple string. If the string has any spaces, then it should be enclosed in
double quotes.

As a Bash example:

dsv home create secret1 --attributes '{"priority":"high"}' --desc "Covert Secret" --data
'{"username":"administrator","password":"bash-secret"}'

Update

update is similar to create but operates on an existing Home value. Only the specified values change unless the `--
overwrite' flag is used, in which case all unspecified values are deleted.

If you have this Home value:

{

 "attributes": {

 "attr": "add one"

 },

 "created": "2019-09-20T16:12:57Z",

 "createdBy": "users:user@company.com",

 "data": {

 "host": "server01",

 "password": "badpassword"

 },

 "description": "update description",

 "id": "c893b4f8-9425-4fa4-acbf-2806d6f1fa82",

 "lastModified": "2020-01-17T15:43:27Z",

 "lastModifiedBy": "users:dsv-one:admin@company.com",

 "path": "users:user@company.com:secret1",

 "version": "12"

}

This Bash command will only change the value for host in the data section.

Delinea DevOps Secrets Vault Administrator Guide Page 82 of 284

Usage

dsv home update secret1 --data '{\"host\":\"unknown\"}'

{

 "attributes": {

 "attr": "add one"

 },

 "created": "2019-09-20T16:12:57Z",

 "createdBy": "users:user@company.com",

 "data": {

 "host": "unknown",

 "password": "badpassword"

 },

 "description": "update description",

 "id": "c893b4f8-9425-4fa4-acbf-2806d6f1fa82",

 "lastModified": "2020-08-03T17:58:29Z",

 "lastModifiedBy": "users:user@company.com",

 "path": "users:user@company.com:secret1",

 "version": "13"

}

The flag --overwrite, if added to the above command would wipe-out the description and any other data KV pairs.
So this flag requires caution.

dsv home update secret1 --data '{\"host\":\"unknown\"}' --overwrite

Read

The read command shows both the Secret data and metadata.

dsv home read secret1

Flags

--encoding or -e converts the output to JSON (default) or YAML.

--out or -o can send the read response to stdout (default), the clipboard (clip), or a file (file:<filename>)

--filter or -f filters to a specific KV pair. So data.password would only output the password value.

This example would send the password value only to the clipboard.

dsv home read secret2 -o clip -f data.password

Describe

The command describe only shows the metadata of a Home value

Delinea DevOps Secrets Vault Administrator Guide Page 83 of 284

Usage

dsv home describe secret1

Search

You can search for Secrets by path or attribute

Some examples

dsv home search server

dsv home search --query server

dsv home search --query aws --search-field attributes.type

dsv home search --query 900 --search-field attributes.ttl --search-type number

dsv home search --query production --search-field attributes.stage --search-comparison
equal

flags

--query, -qQuery of secrets to fetch (required)

--limit Set the maximum number of search results that will display per page (cursor)

--cursor Accepts the element used to get the next page of results

--search-comparison Specify the operator for advanced field searching, can be 'contains', 'equal', or 'begins_with'
Defaults to 'contains' (optional)

--search-field Advanced search on a secret field such as 'attribute.type' or 'description'. Defaults to 'path'.
(optional)

--search-type Specify the value type for advanced field searching, can be 'number' or 'string'. Defaults to 'string'
(optional)

For a search where there are more results than returned in the first set, the API returns a cursor—a large piece of
text. You pass that back to get the next set of results.

For example, if the command dsv secret search -q admin --limit 10matched 12 Secrets with admin in the
name, the CLI would return the first 10 plus a cursor. To obtain the next two results, you would use this command:

dsv secret search -q admin --limit 10 --cursor AFSDFSD...DKFJLSDJ=

Cursors may be lengthy:

dsv secret search -q resources --limit 10 --cursor
eyJpZCI6ImEwOTFjOWIzLWE4MmQtNGRiYy1hYThiLTYxMDY0NDZhZjA3MSIsInBhdGgiOiIiLCJ2ZXJzaW9uIjoidi
1jdXJyZW50IiwidHlwZSI6IiIsImxhdGVzdCI6MH0=

Delinea DevOps Secrets Vault Administrator Guide Page 84 of 284

Usage

Edit

Use edit to open the Secret data in the default text editor for bash, such as vi, nano, or Notepad.

n Saving in the editor updates the Secret in the vault, except in the case of Notepad, in which case the update
happens when you save and then exit Notepad. Your interim saves are to the working copy.

dsv home edit --path us-east/server02

Delete

To delete a Home value, simply specify its name.

dsv home delete secret1

When you delete a Secret, it will no longer be usable. However, with the soft delete capacity of DSV, you have 72
hours to use the restore command to undelete the Secret. After 72 hours, the Secret will no longer be retrievable.

Should you want to perform a hard delete, precluding any restore operation, you can use the delete command's --
force flag.

Restore

The delete command is a soft delete for about 72 hours before the delete become permanent. During that time, the
secret can be brought back using the restore command. After the ~72 hours, the secret is permanently deleted
and can't be restored.

dsv home restore secret1

GetByVersion

The --version flag determines how many past versions are displayed along with the current version.

dsv home secret1 --version 3

Rollback

To return a secret to a past version, use the rollback command and a --version flag to determine which version
to return to. The original version is 0.

Delinea DevOps Secrets Vault Administrator Guide Page 85 of 284

Usage

dsv home rollback secret1 --version 2

DSV UI Reference

DevOps Secrets Vault provides a user interface (UI) for viewing Home Vaults and Shared Vaults, as well as
managing users, user groups, and roles defined in your DevOps Secrets Vault tenant. Refer to the Quick Start for
signing up for a tenant.

The DSV has been refreshed with a new design and navigation to enhance user experience. Learn more about the
Delinea experience here.

Note: Functionality for creating, updating, and deleting UI objects is dependent on the permission granted
for the user's role.

This section provides instructions for:

n Viewing Vaults

n Viewing Engines and Pools

n Viewing, Creating, and Deleting Secrets

n Viewing, Creating, and Deleting Users

n Viewing, Creating, and Deleting Groups and their Members

n Viewing, Creating, and Deleting a Role

Navigating the UI

The UI consists of the following functional areas:

n Left Navigation Panel - provides a fixed reference for accessing DSV functionality. Click Administration to
mange DSV users, user groups, and roles. Secrets are managed in either a Shared Vault (team access) or a
Home Vault (private access).

n Content Container - this main central area of the page updates with details for the selected feature.

n Four Square Icon - accesses additional features for DSV that include links to: CLI Download Page, User
Guide, REST API Guide, and Delinea GitHub (SDKs & Plugins).

n Create Secret (+) - allows the creation of a new secret.

n User Profile - accesses general information that includes and controls for adjusting the look and feel of the UI, a

Delinea DevOps Secrets Vault Administrator Guide Page 86 of 284

Usage

https://delinea.com/blog/introducing-delinea

change password feature, date and time settings, and logout.

Customizing the UI

To adjust the look and feel of the UI:

1. Click your User Profile and select User Preferrences.

2. On the User Preferences page, select the Settings tab.

3. Adjust any of the following UI controls:

n Color Mode can be switched between Light Mode and Dark Mode.

n Date Format can be set as a US (M/D/yyy) or international (yyy.MM.dd) format.

Delinea DevOps Secrets Vault Administrator Guide Page 87 of 284

Usage

n Time Format allows selection of the time format (hh.mm.tt, H:mm).

Audit

The Audit page displays details for each action in the application, including: date recorded, the type of action (GET
or PUT), the user associated with the action (Principal), the type of action or area of interaction with the application
(Path), the status code produced, and any message returned.

Note: Depending on the permissions granted to your role, audit details displayed may be limited to your
user, or include other users.

Use the interval drop-dow in the chart header to adjust the data displayed to a specific range of days. The items
count at the top of the chart indicated the total number of audit items in the selected interval.

Delinea DevOps Secrets Vault Administrator Guide Page 88 of 284

Usage

Viewing Vaults

Users are able to view Shared Vaults, as well as their Home Vault in the left navigation panel, displayed under
Secrets, at a top level.

The display of both Home Vaults and the Secrets folder is optimized in the left navigation panel. When expanding
the Secrets folder, the Home Vaults folder automatically collapses to avoid confusion between the two folders and
maximize space for the subfolders.

Select a vault to view the path created for its secrets.

Delinea DevOps Secrets Vault Administrator Guide Page 89 of 284

Usage

Select any path created for its secrets. Refer to Secrets for detailed secret functionality.

Dashboard

The dashboard, available from the left navigation panel, provides a real-time view of request processing over time,
as well as the total secrets stored across all secrets vaults.

Select a time interval at the pull-down (Last 10 days, Last 30 days, Lst 60 days, Last 90 days, or Custom), to view
individual requests/day in the given interval. Use the interactive slider below the chart to focus on a specific date
range within the selected interval.

Secrets

Users are able to view their secrets in the left navigation panel. Click Secrets for a list view of all secrets in the
application. The name, path and access rights to the secret are displayed. Access rights include R (read), U
(update) and D (delete).

Delinea DevOps Secrets Vault Administrator Guide Page 90 of 284

Usage

Note: Secrets can also be accessed from their respective vaults. Refer to Viewing Vaults.

Viewing Secrets Metadata

Click any secret to display the metadata for the secret. Metadata includes: the ID and path name, any attributes
defined, version, as well as the times and dates when secrets were created or last modified by a user.

Note: The Update permission is required for an account, in order to edit any of the values for a secret.

Hover over the Created and Last Modified fields to see the exact date and time the action was performed.

Delinea DevOps Secrets Vault Administrator Guide Page 91 of 284

Usage

Rolling Back a Secret's Version

Any editable parameter for a secret can be updated. When updated, a new version of the secret is created (0, 1, 2
etc.).

The version of any secret can be selected and instituted as the current version. To do so, select the desired version
at the Version pulldown, then click Rollback.

Accessing Audit Details

Click Audit to access the audit trail for the secrets.

Audit details include the following information:

Parameter Value

DATE RECORDED The date and time an action was taken.

ACTION The action performed for the secret as either: PUT or GET.

PRINCIPAL The user performing the action.

STATUS The HTTP status code returned to the caller as the result of the action.

MESSAGE Any message text created when the action was performed.

Creating and Deleting Secrets

Note: The Create and Delete permission are required for an account, in order to create or delete a Role.

Secrets are deleted from the General tab for that secret's metadata. Click Delete, then click Delete again at the
confirmation prompt.

Delinea DevOps Secrets Vault Administrator Guide Page 92 of 284

Usage

Secrets are created at any page in the application, using the Add icon (+)in the top right corner. Click + and supply
the requested parameters for the new secret at the Create New Secret dialog, then click Save.

Note: Additionally, the Create New Secret button is available at the folder level of any Shared or Home
Vault.

.

Parameters for creating a new secret include:

Parameter Value

Save To The name of the vault where the secret is saved.

Path The path to the secret in that vault.

Data Any data defined for the secret by a JSON string. Refer to secrets in the CLI Command
Reference.

Attributes The attributes defined for the secret by a JSON string. Refer to secrets in the CLI Command
Reference.

Description Narrative information that identifies the secret.

Auth Providers

Select AuthProviders in the left navigation panel to obtain the AuthProviders page. This page lists the currently
defined authentication providers for use in the application. The name and dates the provider was created and
modified is shown, along with the type of provider. TYPE can include: certificate, ThycoticOne, Azure and AWS.

Delinea DevOps Secrets Vault Administrator Guide Page 93 of 284

Usage

Downloading AuthProvider Information

Click the download control in the top right of the list to download a CSV file that contains the parameters of the
currently defined authentication providers. Provide a name and select a date format for the information, then click
Download.

Create a New Authentication Provider

Click Create in the top right of the list. Provide the following parameters for the new authentication provider, then
click Create.

Parameter Definition

Name The label used to identify the authentication provider in the application.

Type The type of authentication used with the provider as GCP (authentication using a General
Certificate Provider), ThycoticOne (authentication using OIDC compliant authentication
providers configured to work with Thycotic One account credentials), Azure (authentication
using Azure account credentials), and AWS (authentication using Amazon Web Services
credentials).

Delinea DevOps Secrets Vault Administrator Guide Page 94 of 284

Usage

Users

Sign into your DSV tenant. On the Home page, open the Administration drop-down to access Users.

Viewing Users

At the Administration drop-down, select Users. A table of the currently defined Users is displayed.

Use the filter icon at the far right of the table header to enable or disable columns included in the table.

The following parameters are displayed for each User account.

Delinea DevOps Secrets Vault Administrator Guide Page 95 of 284

Usage

Parameter Value

USERNAME Local username; required; supports local authentication by username and password; need not
match that used by a federated authentication provider (if present)

DISPLAY
NAME

Locally used display name for identifying the User in DSV

ID Unique identifier used for this User

PROVIDER Matches the name attribute of the authentication provider in the settings section of the config

CREATED When the User account was created

EXTERNAL ID Identifier recognized by third-party federated authentication providers, such as AWS or ARN

Click any User account in the table to access the User Details page for that User. The User Details page provides a
Reset Password and Delete User option, as well as the ability to edit the Display Name.

By default the General tab displays for a selected user. The information on this tab presents specific login and user
detail information. Click Membership to display any User Groups that the user belongs to.

Click Audit to display the audit log for the user account. Audit details include the following information:

Delinea DevOps Secrets Vault Administrator Guide Page 96 of 284

Usage

Parameter Value

DATE RECORDED The date and time an action was taken

ACTION The action performed for the user as either: POST or GET

PATH The path to where the user account is located

STATUS The HTTP status code returned to the caller as the result of the action

MESSAGE Any message text created when the action was performed

Creating Users

To create a User:

1. At the Administration > Users page, click Create User.

2. Enter values for the requested fields and click Add User. Required fields are indicated by an asterisk (*).

Delinea DevOps Secrets Vault Administrator Guide Page 97 of 284

Usage

3. The User Details page for the newly created User is displayed.

4. Click Administration > Users to return to the Users page.

Assigning Group Membership

Any User account can be associated with a Group. A Group determines the policies and permissions enabled for
the User. The Group Memberships available for selection for a User are predefined by the Administrator.

To create a Group Membership:

1. At the Administration > Users page, click the User account to be associated with a Group.

2. Click the Membership tab.

3. Click Add Groups.

4. At the Add Groups modal, select the desired Group Memberships. One or more Memberships can be selected.
If Memberships already exist for a User, they can be disabled if needed. Click Save when complete.

5. The page is updated with User Group Memberships.

Groups

Sign into your DSV tenant. On the Home page, open the Administration drop-down to access Groups.

Delinea DevOps Secrets Vault Administrator Guide Page 98 of 284

Usage

Viewing Groups

At the Administration drop-down, select Groups. A table of the currently defined Groups is displayed.

Use the filter icon at the far right of the table header to enable or disable columns included in the table. The search
icon can be used to identify a specific Group for display.

The following parameters are displayed for each Group account.

Parameter Value

NAME Locally used display name for identifying the Group

MEMBERS The number of Members in the group

CREATED When the Group was created

Click any Group in the table to access the Group Details page. Details include the name, date created and version
for the group.

Delinea DevOps Secrets Vault Administrator Guide Page 99 of 284

Usage

Managing the Members in a Group

On the Group details page, click the Members tab to view the Members currently assigned to the Group. Use the
filter icon at the far right of the table header to enable or disable columns included in the table. The search icon can
be used to identify a specific Member for display.

The Members tab also allows Members to be added or removed.

To delete a Member from the Group, click Remove. The Member list is updated with the selected Members
removed,

To add a Member to the Group, click Add Members. Use the checkboxes to select the desired Members to be
added. The Search field can be used to quickly identify a Member to add. Click Save when all Members are
selected.

Delinea DevOps Secrets Vault Administrator Guide Page 100 of 284

Usage

Creating Groups

Note: The Create permission is required for an account, in order to create a Group.

To create a Group:

1. At the Administration > Groups page, click Create New Group.

2. Enter a name for the Group and click Create New Group.

3. The Administration > Groups page is refreshed with the newly added Group.

Deleting a Group

Note: The Delete permission is required for an account, in order to delete a Group.

To delete a Group:

1. At the Administration > Groups page, select the Group to be deleted.

2. At the Group details page, click Delete Group.

Delinea DevOps Secrets Vault Administrator Guide Page 101 of 284

Usage

3. The Administration > Groups page is refreshed. The Group no longer appears in the Group list.

Roles

Sign into your DSV tenant. On the Home page, open the Administration drop-down to access Roles.

Viewing Roles

At the Administration drop-down, select Roles. A table of the currently defined Roles is displayed.

Use the filter icon at the far right of the table header to enable or disable columns included in the table. The search
icon can be used to identify a specific Role for display.

The following parameters are displayed for each Role.

Delinea DevOps Secrets Vault Administrator Guide Page 102 of 284

Usage

Parameter Value

ROLE NAME Locally used display name for identifying the Role

PROVIDER The mechanism used to authenticate the Role

EXTERNAL
ID

The name that identifies the Role in the integration

OF
CLIENTS

The number of clients associated with the Role

CREATED The time elapsed (in months) since the role was created. Hover over the value to display the
date and time the Role was created.

Viewing Role Details

Click any Role in the table to access the Role Details page.

The tabs at the top of the Role Details page provides the following functionality.

Tab Functionality

General Displays role details that include the name, description, authentication provider, external ID, and
date created for the Role

Clients
Attached

Displays the clients attached to the Role and allows filtering and searching of clients. The date
displayed indicates when the client was created in the application. If the URL column indicates
YES, the client link represents and active URL for login.

Audit Displays all events for the given Role

Delinea DevOps Secrets Vault Administrator Guide Page 103 of 284

Usage

Attached Clients

With the Clients Attached tab selected, click any Client ID to view its Client Details page.

The following parameters are displayed for each client.

Parameter Definition

Client ID The unique identifier assigned to the client.

Description A narrative summary that identifies the client.

Role The Role associated with the client.

URL When enabled, login via a URL is enabled. When disabled, user credentials are required for
login.

Client TTL This field appears when a URL is selected. The Time To Live (TTL) is the time the client will
exist. When set to 0, the client will exist indefinitely.

Created A reference to when the client was created. Hover over the entry to view the creation date and
time.

Click Delete Client to remove an attached client. The client is no longer displayed on the Clients Attached list.

Click Create New Client to attach a new client, and supply the requested parameters at the Create New Client
dialog.

When creating a client, a Description, Client TTL (sec), and Client Uses value is required. Client Uses is the
number of times the client credential can be used. When set to 0, the client can be used indefinitely. If login is
enabled with a URL, enable the URL checkbox. Click Save.

Creating Roles

Note: The Create permission is required for an account, in order to create a Role.

To create a Role:

Delinea DevOps Secrets Vault Administrator Guide Page 104 of 284

Usage

1. At the Administration | Roles page, click Create Role.

2. Enter a Role Name and Description for the Role. Select the Auth Provider and click Add Role.

3. The Roles page is refreshed with the newly added Role.

Deleting a Role

Note: The Delete permission is required for an account, in order to delete a Role.

To delete a Role:

1. At the Administration | Roles page, select the Role to be deleted.

2. At the Role details page, click Delete Role.

3. The Roles page is refreshed. The Role no longer appears in the Role list.

Policies

Policies determine access to resources and the authority to work on resources. Sign into your DSV tenant. On the
Home page, open the Administration drop-down to access Policies.

Viewing Policies

At the Administration drop-down, select Policies. A table of the currently defined Policies is displayed.

Use the filter icon at the far right of the table header to enable or disable columns included in the table. The search
icon can be used to identify a specific Policy for display.

Delinea DevOps Secrets Vault Administrator Guide Page 105 of 284

Usage

The following parameters are displayed for each Policy.

Parameter Value

PATH The path to the policy.

CREATED The time elapsed (in year/months/days/hours; or "just now") since the Policy was created. Hover
over the value to display the date and time the Policy was created.

Viewing Policy Details

Click any Policy in the table to access the Policy Details page.

Click Delete Policy to remove the currently displayed Policy.

In addition to the basic information regarding the policy identifiers and dates, the Policy includes information for
Permission Documents.

Parameter Value

Effect Determines whether the permissions for the Policy are allowed (allow) or denied deny).

Delinea DevOps Secrets Vault Administrator Guide Page 106 of 284

Usage

Parameter Value

Actions The actions (create, read, update, delete, list, assign) that are supported by the Policy. <.*>
indicates all actions.
Note: Basic policy functionality is currently supported, however, future enhancements to the UI
for Policies will provide full functionality. Refer to the CLI Reference for robust Policy
customization.

Resources The resources affected by the Policy. Typically, this is the same value as the PATH, unless a
more specific instance of resource applies.

Creating a New Policy

1. From the Policies page, click Create New Policy.

Note: The Create permission is required for an account, in order to create a Policy.

2. At the Create New Policy dialog, provide the following parameters:

Parameter Value

Path The path to the Policy.

Subjects The users (groups or roles) that the Policy affects.

Resources The Resources that the Policy affects. Typically, this is the same value as the PATH, unless a
more specific instance of resource applies.

Delinea DevOps Secrets Vault Administrator Guide Page 107 of 284

Usage

Parameter Value

Actions The actions (create, read, update, delete, list, assign) that are supported by the Policy. <.*>
indicates all actions.

Effect Controls whether the permissions for the Policy are allowed (allow) or denied (deny).

Description A short narrative that identifies the Policy.

3. Click Save.

Engines and Pools

Log onto your DSV tenant. On the Home page, open the Administration drop-down.

Viewing and Pools

At the Administration drop-down, select Pools. A table of the currently defined Pools is displayed, along with the
name of the pool and how long ago it was created.

Hover over the CREATED entry to view the date and time the pool was created.

Use the filter icon at the far right of the table header to enable or disable columns included in the table.

Creating a Pool

On the Pools page, click Create New Pool. Supply a Name for the Pool and click Save. The Pool Details page is
displayed for the newly created Pool.

Viewing Pool Details

Click any Pool in the list of Pools. The following parameters are displayed on the General tab on the Pool Details
page.

Delinea DevOps Secrets Vault Administrator Guide Page 108 of 284

Usage

Parameter Value

Name Locally used display name for identifying the Pool in DSV

ID Unique identifier used for this Pool

Created, Created By When the Pool was created and by what user

Last Modified By The user that made the last update to the pool

Version The current version of the pool.

Use Delete Pool to remove the pool from the application. Click Delete again at the confirmation prompt.

Viewing Attached Engines

Click the Engines Attached tab on the Pool Details page. The name of the engine, how long ago it was created, and
its last known heartbeat are displayed.

Hover over the CREATED and LAST HEARTBEAT values to display the associated date and time.

Creating a New Engine

To create a new engine, click Create New Engine. Supply a Name for the Engine, or select an existing engine to
attach. Click Save.

The application displays the Private Key for the engine. Use this prompt to copy the key, as it cannot be recovered
again.

Delinea DevOps Secrets Vault Administrator Guide Page 109 of 284

Usage

Click Done. The Engine Details page is displayed for the newly created Engine.

Viewing Engine Details

On the Pool Details page, click Engines Attached. Select any engine to view its details.

The following parameters are displayed for the associated Engine.

Parameter Value

Name Locally used display name for identifying the Engine in DSV

ID Unique identifier used for this Engine

Endpoint

Last Heartbeat The last known signal generated by the engine

Last Modified, Last Modified By The user that made the last update to the pool and when it was made

Created, Created By When the Engine was created and by what user

Version The current version of the engine.

Use Delete Engine to remove the engine from the application. Click Delete again at the confirmation prompt.

Delinea DevOps Secrets Vault Administrator Guide Page 110 of 284

Usage

SIEM

SIEM integrations are viewable and actionable from the Administration menu on the Home page. SEIM integrations
produce the audit logs of captured actions that are sent to registered Security Information and Event Management
(SIEM) endpoints in near real time.

Note: SIEM actions are also supported in the CLI. Refer to SIEM Integrations.

Viewing SIEM Integrations

To access a list of the currently defined SIEM integrations, select SIEM from the Administration drop-down.

Note: For every audit action, DSV will try twice to reach the endpoint. If the endpoint is unresponsive after
ten actions and retries, DSV will deregister the endpoint and mark it as failed (FAILED yes). The endpoint
must be recreated or updated to be used again.

At the SIEM page, click any SIEM to view its details. In addition to the parameters defined when the SIEM
integration was created (refer to Creating a SIEM Integration for Auditing), the following information is provided:

n ID: The internal audit ID associated with the protocol.

n Failed Events: The number of times a send to the endpoint failed.

Delinea DevOps Secrets Vault Administrator Guide Page 111 of 284

Usage

Creating a SIEM Integration for Auditing

1. From the Home page, select the SIEM folder, then click Create New SIEM. Supply the following information at
the Create New SIEM dialog box.

Field Description

Name
(required)

The label in the UI used to identify the SIEM configuration.

SIEM Type
(required)

The logging output format used to register an endpoint.

Protocol
(required)

transport protocol expected by endpoint.

Logging
Format
(required)

The format for Syslog messages. Currently, messages must be in RFC 5424-compliant format.

Host
(required)

The URL of the server that hosts the configuration.

Port
(required)

The port number used in the protocol.

Delinea DevOps Secrets Vault Administrator Guide Page 112 of 284

Usage

Field Description

Auth
(required)

The authentication method used in the protocol.

Endpoint The endpoint on the network that SIEM logs are generated for.

Send to
Engine

Enabling this control allows audit logs to be sent through a DSV engine to a server that isn't
accessible to the outside internet. An engine and pool must be already configured.

Pool
(required)

If Send to Engine is enabled, this field allows selection of an engine pool. A message will appear
if a pool does not exist for selection or a network delay occurs.

2. Click Save.

Deleting a SIEM Integraion

To delete a SIEM integration, select the SIEM integration in the list on the SIEM page to access its details.

Click Delete SIEM.

The integration is removed from the SIEM list.

Authentication

DSV supports several authentication methods.

Password

Password authentication relies directly on individual User accounts. It requires an initial administrator account with
username and password authentication.

DSV encrypts the password in the config on successful authentication. This prevents users from accidentally
disclosing the password by sending the config to someone or by giving access to the computer to another person.

Routine activities associated with this authentication method include:

n creating a new user

n entering the username and password of the new user

n adding the new user to the DSV config

See the users portion of the CLI Reference for details.

Client Credentials

In this method, you authenticate via a client id and a secret generated by the vault. This suits situations requiring
application or server access when no third party trust is feasible.

Client credentials tie to roles, not user accounts, the significance being that roles have a one-to-many relationship
with user accounts. Using roles-based authentication allows you to efficiently apply uniform authentication
requirements to collections of users.

Delinea DevOps Secrets Vault Administrator Guide Page 113 of 284

Usage

Routine activities associated with the client credentials authentication method include:

n creating a new role

n adding the new role to the DSV config

n creating new client credentials using the new role

n invoking the init command and supplying those client credentials

See the Roles portion of the CLI Reference for more information.

Thycotic One Authentication

Users can authenticate into DSV using a Thycotic One account. To add a User with Thycotic One authentication:

Note: Thycotic One authentication provides the option of sending a welcome email directly to new users
with a link to create their login. To enable welcome emails, use the dsv config auth-provider update

command and set the sendWelcomeEmail value to true.

1. Create a user and assign credentials using the following format:

dsv user create --username thyoneuser@yourorganization.com --provider thy-one

2. If you have set sendWelcomeEmail to true in your auth-provider configuration, the user will receive an email
with a link to both confirm their email address and setup a password.

3. Once the Thycotic One user follows the link and sets a password, they will be ready to authenticate to DSV.

Third Party Authentication

Besides Thycotic One, DevOps Secrets Vault works with third party authentication providers, including:

AWS IAM: DSV uses the current AWS profile to generate a signed request which the vault validates against AWS.
You can use this with EC2 instances and with a Lambda that is assigned an IAM Role or an IAM User account. See
Authentication: AWS

Azure MSI: DSV uses the assigned Azure Managed Service Identity (MSI). See Authentication: Azure

GCP Service Accounts: DSV uses GCP's service accounts to enable secrets access to just about anything that
can be assigned a service account. Google Compute Engines (GCE) may also be assigned service accounts and
authenticated through GCE metadata. See Authentication: GCP.

Delinea DevOps Secrets Vault Administrator Guide Page 114 of 284

Usage

OIDC Provider DSV connects to Thycotic One, which in-turn may connect to any OIDC provider. See
Authentication: OIDC.

Profiles

On initial configuration, your DevOps Secrets Vault config will have just one profile with the choices you specified
for credentials storage, authentication type, and cache strategy for secrets.

However, DSV supports creating other profiles, potentially with different credentials, and adding them to the config.
Once the config has more than one profile, you can set which one DSV will use by default.

Add a Profile to a Config

DSV syntax gives you two ways to add a profile to the config.

n Run dsv init and type add or a at the prompt. Then enter the name of a new profile.

n To do it with one command, run dsv init --profile [name].

See the Config Contents

If you want to verify the profile has been added, output the updated config contents.

dsv cli-config read

Using an Alternate Profile for a Specific CLI Action

For a config with more than one profile, the profile used by default for any command will be the first profile created.
However, you can override the default by specifying the profile to be used for a command as a parameter.

dsv secret read --path mySecret --profile developer

So commanded, the CLI will try to auth as the User specified in the developer profile and attempt to read the secret
as that user.

The CLI does not have a command to set the default for all commands moving forward. For that, you should edit the
.thy.yml file in the home directory to change the profile set as the default.

Authentication: AWS

Use dsv config auth-provider search -e yaml to see all of your current authentication providers.

Initially, the only authentication provider is Thycotic One, similar to this:

created: "2019-11-11T20:29:20Z"

createdBy: users:thy-one:admin@company.com

id: xxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-18T03:58:15Z"

Delinea DevOps Secrets Vault Administrator Guide Page 115 of 284

Usage

lastModifiedBy: users:thy-one:admin@company.com

name: thy-one

properties:

 baseUri: https://login.thycotic.com/

 clientId: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 clientSecret: xx

type: thycoticone

version: "0"

AWS Authentication Provider

To add an AWS account to act as an authentication provider:

n dsv config auth-provider create --name <name> --type aws --aws-account-id <AWS account ID>

in which:

n name is the friendly name used in DSV to reference this provider.

n type is the authentication provider type; in this case, aws.

n the property flag for AWS is --aws-account-id then include the account ID

To view the resulting addition to the config file, you would use:

dsv config auth-provider <name> read -e yaml where the example name we will use here is aws-dev

The readout would look similar to this:

created: "2019-11-12T18:34:49Z"

createdBy: users:thy-one:admin@company.com

id: xxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-18T03:58:15Z"

lastModifiedBy: users:thy-one:admin@company.com

name: aws-dev

properties:

 accountId: "xxxxxxxxxxxx"

type: aws

version: "0"

AWS User Example

When you create a User in AWS, remember that the username serves as a friendly name within DSV. It does not
have to match the Identity Access Management (IAM) username, but the provider must match the provider name
previously configured.

dsv user create --username test-admin --external-id arn:aws:iam::xxxxxxxxxxx:user/test-
admin --provider aws-dev

After creating the User, modify the config to give that User access to the default administrator permission policy.

Delinea DevOps Secrets Vault Administrator Guide Page 116 of 284

Usage

Note: Adding a user to the admin policy is not security best practices. This is for example purposes only.
Ideally, you would create a separate policy for this AWS user with restricted access. For details on limiting
access through policies, see the Policy section.

dsv config edit -e yaml

Add test-admin as a User subject to the Default Admin Policy. Third party accounts must be prefixed with the
provider name; in this case, the fully qualified username would be aws-dev:test-admin.

<snip>

- actions:

 - <.*>

 conditions: {}

 description: Default Admin Policy

 effect: allow

 id: xxxxxxxxxxxxxxxxxxxx

 meta: null

 resources:

 - <.*>

 subjects:

 - users:<aws-dev:test-admin|admin@company.com>

<snip>

Next, on a machine with the AWS CLI installed and configured with an AWS IAM user, download the DVS CLI
executable appropriate to the OS of the machine, and initialize the CLI:

dsv init

When prompted for the authorization type, choose AWS IAM (federated).

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) #{ThycoticOne}# (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (federated)

DSV will prompt for the specific AWS profile to use if you are authenticating using a non-default AWS profile.

Please enter aws profile for federated aws auth (optional, default:default)

Read an existing Secret to verify you can authenticate to DSV and access data.

Delinea DevOps Secrets Vault Administrator Guide Page 117 of 284

Usage

https://aws.amazon.com/cli/

dsv secret read --path <path to secret>

AWS Role Example

This example assumes that you:

n have your own CLI configured locally with an admin account

n created an IAM Role in the AWS Console

n launched an EC2 instance using the IAM Role

n downloaded the CLI onto the EC2 instance

Create a corresponding Role in DSV with the external-id of the IAM Role's ARN.

dsv role create --name test-role --external-id arn:aws:iam::xxxxxxxxxxx:role/testlogin --
provider aws-dev

You should see a result similar to this:

{

"description": "",

"externalId": "arn:aws:iam::xxxxxxxxxxx:role/testlogin",

"name": "test-role",

"provider": "aws-dev"

}

Add the Role aws-dev:test-role to the Default Admin Policy in your vault config to grant the new Role admin
access.

Note: Adding a role to the admin policy is not security best practices. This is for example purposes only.
Ideally, you would create a separate policy for this AWS role with restricted access. For details on limiting
access through policies, see the Policy section.

Use the command dsv config edit -e yaml

<snip>

- actions:

 - <.*>

 conditions: {}

 description: Default Admin Policy

 effect: allow

 id: bgn8gjei66jc7148d9i0

 meta: null

 resources:

 - <.*>

Delinea DevOps Secrets Vault Administrator Guide Page 118 of 284

Usage

https://dsv.secretsvaultcloud.com/downloads

 subjects:

 - users:<aws-dev:test-admin|admin@company.com>

 - roles:<aws-dev:test-role>

<snip>

On the EC2 instance, configure the CLI by running dsv init and choosing AWS IAM as the authentication type.

Once configured, ensure you can read an existing Secret to verify the EC2 instance is able to authenticate and
access data.

dsv secret read --path <path to secret>

Authentication: Azure

Use dsv config auth-provider search -e yaml to see all of your current authentication providers.

Initially, the only authentication provider is Thycotic One, similar to this:

created: "2019-11-11T20:29:20Z"

createdBy: users:thy-one:admin@company.com

id: xxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-18T03:58:15Z"

lastModifiedBy: users:thy-one:admin@company.com

name: thy-one

properties:

 baseUri: https://login.thycotic.com/

 clientId: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 clientSecret: xx

type: thycoticone

version: "0"

Azure Authentication Provider

To add an Azure account to act as an authentication provider:

n dsv config auth-provider create --name <name> --type azure --azure-tenant-id <Azure tenant
ID>

where:

n name is the friendly name used in DSV to reference this provider

n type is the authentication provider type; in this case, azure

n the property flag for Azure is --azure-tenant-id

To view the resulting addition to the config file, you would use:

dsv config auth-provider <name> read -e yaml where the example name we will use here is azure-prod

The readout would look similar to this:

Delinea DevOps Secrets Vault Administrator Guide Page 119 of 284

Usage

created: "2019-11-12T18:34:49Z"

createdBy: users:thy-one:admin@company.com

-id: xxxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-18T03:58:15Z"

lastModifiedBy: users:thy-one:admin@company.com

name: azure-prod

properties:

 tenantId: xxxxxxxxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

type: azure

version: "0"

Azure User Assigned MSI Example

First you will need to configure the User that corresponds to an Azure User Assigned MSI.

The username is a friendly name within DSV. It does not have to match the MSI username, but the provider must
match the resource id of the MSI in Azure.

dsv user create --username test-api --provider azure-prod --external-id
/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx/resourcegroups/build/providers/Microsoft.ManagedIdentity/userAssignedIdentiti
es/test-api

Modify the config to give that User access to the default administrator permission policy.

Note: Adding a user to the admin policy is not security best practices. This is for example purposes only.
Ideally, you would create a separate policy for this Azure user with restricted access. For details on limiting
access through policies, see the Policy section.

dsv config edit --encoding yaml

Add the User as a subject to the Default Admin Policy. Third party accounts must be prefixed with the provider
name; in this case the fully qualified username will be azure-prod:test-api.

<snip>

- actions:

 - <.*>

 conditions: {}

 description: Default Admin Policy

 effect: allow

 id: xxxxxxxxxxxxxxxxxxxx

 meta: null

 resources:

 - <.*>

 subjects:

 - users:<azure-prod:test-api|admin@company.com>

<snip>

Delinea DevOps Secrets Vault Administrator Guide Page 120 of 284

Usage

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

On a VM in Azure that has the User MSI assigned as the identity, download the DVS CLI executable appropriate to
the OS of the VM and initialize the CLI.

dsv init

When prompted for the authorization type, choose the Azure (federated) authentication option.

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) #{ThycoticOne}# (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (federated)

Read an existing secret to verify you can authenticate and access data.

dsv secret read --path <path to a secret>

Azure Resource Group

If you want to grant access to a set of VMs in a resource group that use a System assigned MSI rather than a User
assigned MSI, you can create a role that corresponds to the resource group's resource ID.

dsv role create --name identity-rg --external-id /subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx/resourcegroups/build --provider azure-prod

Modify the config to give that role access to the default administrator permission policy.

Note: Adding a role to the admin policy is not security best practices. This is for example purposes only.
Ideally, you would create a separate policy for this Azure role with restricted access. For details on limiting
access through policies, see the Policy section.

dsv config edit --encoding yaml

Add the User as a subject to the Default Admin Policy. Third party accounts must be prefixed with the provider
name; in this case the fully qualified role name will be azure-prod:identity-rg.

<snip>

- actions:

Delinea DevOps Secrets Vault Administrator Guide Page 121 of 284

Usage

 - <.*>

 conditions: {}

 description: Default Admin Policy

 effect: allow

 id: bgn8gjei66jc7148d9i0

 meta: null

 resources:

 - <.*>

 subjects:

 - users:<azure-prod:test-api|admin@company.com>

 - roles:<azure-prod:identity-rg>

<snip>

On a VM in Azure that is part of the resource group and has a system-assigned MSI, download the DVS CLI
executable appropriate to the OS of the VM and initialize the CLI.

dsv init

When prompted for the authorization type, choose the Azure (federated) option.

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) #{ThycoticOne}# (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

Read an existing secret to verify you are able to authenticate and access data.

dsv secret read --path <path to a secret>

Authentication Google Cloud Platform (GCP)

DevOps Secrets Vault provides two ways to authenticate using GCP. One is through a Google service account and
the other is through Google Compute Engine (GCE) metadata.

Google Service Account Authentication

To setup GCP authentication using service accounts in DSV, a GCP service account must be provided that DSV
can use as the authentication provider. This service account must be assigned to the project you are working in,
have the role Service Account Key Admin so that it can issue and manage service account tokens, and a key must
be generated.

These steps can be done programmatically, but we will use the GCP Console.

Delinea DevOps Secrets Vault Administrator Guide Page 122 of 284

Usage

GCP Service Account Setup

In the GCP Console Home page, go to your project, hover IAM & Admin, and then click Service Accounts.

At the top, click CREATE SERVICE ACCOUNT.

For the first step, enter an account name. We will use dsv-svc in this example. Click CREATE.

In the second step, click the drop-down arrow in the Select a role box, type service account key admin in the
filter and select Service Account Key Admin. Then click Continue.

Delinea DevOps Secrets Vault Administrator Guide Page 123 of 284

Usage

In the third step, click CREATE KEY and when the option to generate a file slides in from the right, select json and
click CREATE. A file will be downloaded that will have all the information needed to setup the DSV authentication
provider.

The Goolge API for IAM must be enabled. To do this in the Google Console, go to the relevant project and on the
left navigation, hover APIs & Services then select Library.

In the search, type Identity and Access and in the results, select the Identity and Access Management (IAM)
API. Click Enable.

Delinea DevOps Secrets Vault Administrator Guide Page 124 of 284

Usage

DSV Authentication Provider Setup

Go back to the terminal (DevOps Secrets Vault CLI).

Use dsv config auth-provider search -e yaml to see all of your current authentication providers.

Initially, the only authentication provider is Thycotic One, similar to this:

created: "2019-11-11T20:29:20Z"

createdBy: users:thy-one:admin@company.com

id: xxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-18T03:58:15Z"

lastModifiedBy: users:thy-one:admin@company.com

name: thy-one

properties:

 baseUri: https://login.thycotic.com/

 clientId: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 clientSecret: xx

type: thycoticone

version: "0"

Setup the DSV authentication provider. Create a json file named auth-gcp.txt with the following format,
substituting the dsv-svc service account values in the key file you downloaded from the GCP console.

{

 "name": "gcloud",

 "type": "gcp",

 "properties": {

 "ProjectId": "{project-id}",

 "type": "service_account",

 "PrivateKeyId": "{private-key-id}",

 "PrivateKey": "-----BEGIN PRIVATE KEY-----{private-key}-----END PRIVATE KEY-----\n",

 "ClientEmail": "{clientemail}",

 "TokenURI": "https://oauth2.googleapis.com/token"

 }

}

Delinea DevOps Secrets Vault Administrator Guide Page 125 of 284

Usage

In the DSV CLI, run dsv config auth-provider create --data @auth-gcp.txt to create the GCP
authentication provider.

dsv config auth-provider <name> read -e yaml where the example name we will use here is gcloud

created: "2019-11-12T18:34:49Z"

createdBy: users:thy-one:admin@company.com

id: bq4ce17cj2bc72qun8vg

lastModified: "2020-05-18T03:58:15Z"

lastModifiedBy: users:thy-one:admin@company.com

name: gcloud

properties:

clientEmail: dsv-svc@myfirstproject-xxxxxx.iam.gserviceaccount.com

privateKey: |

-----BEGIN PRIVATE KEY-----

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XXXXXXXXXXXXXXXXXXXXXXXX=

-----END PRIVATE KEY-----

privateKeyId: 9xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx3

projectId: myfirstproject-xxxxxx

tokenUri: https://oauth2.googleapis.com/token

type: service_account

type: gcp

DSV Service Account/User Mapping

Now the service account that is going to access DSV is required. For this example, we will name this account
client-svc The setup in GCP is the same as above for the dsv-svc account except that when the role is assigned,

Delinea DevOps Secrets Vault Administrator Guide Page 126 of 284

Usage

it must be Service Account Token Creator so that this account can request tokens. Also, after generating the key,
make sure to save the file to the local machine that will access DSV and note the location.

In the DSV CLI, create a User called gcp-test referring to the client-svc service account with gcloud as the
authentication provider using dsv user create --username gcp-test --provider gcloud --external-id

client-svc@myfirstproject-273119.iam.gserviceaccount.com.

{

 "cursor": "",

 "data": [

{

 "created": "2020-04-04T17:56:33Z",

 "createdBy": "users:thy-one:admin@company.com",

 "externalId": "client-svc@myfirstproject-xxxxxx.iam.gserviceaccount.com",

 "id": "d6a8e1e5-5554-4fc8-a4ca-1c1a653f9095",

 "lastModified": "2020-04-04T17:56:33Z",

 "lastModifiedBy": "users:thy-one:admin@company.com",

 "provider": "gcloud",

 "userName": "gcp-test",

 "version": "0"

 }

],

 "length": 1,

 "limit": 25

}

Set an environmental variable named GOOGLE_APPLICATION_CREDENTIALS to the path of the key file for
client-svc that was just downloaded.

In Linux or Mac, this might look like:

export GOOGLE_APPLICATION_CREDENTIALS="/home/user/Downloads/[FILE_NAME].json"

Windows Powershell

$env:GOOGLE_APPLICATION_CREDENTIALS="C:\Users\username\Downloads\[FILE_NAME].json"

Windows Command Line

set GOOGLE_APPLICATION_CREDENTIALS=C:\Users\username\Downloads\[FILE_NAME].json

After creating the User, modify the config to give that User access to the default administrator permission policy.

Note: Adding a User to the admin policy is not security best practices. This is for example purposes only.
Ideally, you would create a separate policy for this GCP service account with restricted access. For details
on limiting access through policies, see the Policy section.

Delinea DevOps Secrets Vault Administrator Guide Page 127 of 284

Usage

dsv config edit

Add gcloud:gcp-test as a User to the Default Admin Policy. Third party accounts must be prefixed with the provider
name; in this case, the fully qualified username would be glcoud:gcp-test.

<snip>

- actions:

 - <.*>

 conditions: {}

 description: Default Admin Policy

 effect: allow

 id: xxxxxxxxxxxxxxxxxxxx

 meta: null

 resources:

 - <.*>

 subjects:

 - users:<gcloud:gcp-test|admin@company.com>

<snip>

Run dsv init filling out the desired values and selecting 6 GCP (federated) when prompted for the auth type.

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) #{ThycoticOne}# (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (federated)

Run dsv auth to verify authentication. A token will be displayed.

Run dsv secret read <path to any secret> to verify secret access.

Google Compute Engine (GCE) Metadata Authentication

The idea behind GCE Metadata authentication is to enable a GCE instance to gain access to DevOps Secrets
Vault.

In this example we assume you have created a Linux Google Compute Instance and have the Google Compute
Engine API enabled.

Delinea DevOps Secrets Vault Administrator Guide Page 128 of 284

Usage

It is further assumed that the Compute Engine default service account is used. However, you can assign a
different service account to the Compute instance if desired.

Note: Using the GCE default service account is generally not best practices because it is defaulted to
every GCE that is created, violating the idea of least privileges. This is for illustration purposes.

To find the Compute Engine default service account email, from the GCP Console Home, hover IAM and then
click Service Accounts.

The name will say "Compute Engine default service account". Copy and store the email for later.

DSV GCE Authentication Provider setup

Using any computer with Admin DSV access, we now want to setup the DSV Authentication Provider.

Create a file named 'auth-gcp.txt' in the following format and substituting your ProjectID.

Delinea DevOps Secrets Vault Administrator Guide Page 129 of 284

Usage

{

 "name": "gcloud-gce",

 "type": "gcp",

 "properties": {

 "ProjectId": "myfirstproject-273119"

 }

}

Run dsv config auth-provider create --data @auth-gcp.txt to implement the Authentication Provider.

To view the resulting addition to the config file, you would use:

dsv config auth-provider <name> read -e yaml where the example name we will use here is gcloud-gce.

- ID: bq71e5co19js72ppv140

name: gcloud-gce

properties:

projectId: myfirstproject-273119

type: gcp

tenantName: company

created: "2019-11-12T18:34:49Z"

createdBy: users:thy-one:admin@company.com

id: xxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-18T03:58:15Z"

lastModifiedBy: users:thy-one:admin@company.com

name: gcloud-gce

properties:

projectId: myfirstproject-xxxxxx

type: gcp

version: "0"

DSV GCE Metadata Service Account/DSV User Mapping

Run dsv user create --username gce-test --provider gcloud-gce --external-id {default compute

service account email} using the default service account email we saved earlier.

{

 "created": "2020-04-09T12:59:44Z",

 "createdBy": "users:thy-one:admin@company.com",

 "externalId": "2XXXXXXXXXX3-compute@developer.gserviceaccount.com",

 "id": "19709b4e-2a13-4164-a930-81997b568036",

 "lastModified": "2020-04-09T12:59:44Z",

 "lastModifiedBy": "users:thy-one:admin@company.com",

 "provider": "gcloud-gce",

 "userName": "gce-test",

Delinea DevOps Secrets Vault Administrator Guide Page 130 of 284

Usage

 "version": "0"

}

After creating the User, modify the config to give that User access to the default administrator permission policy.

Note: Adding a user to the admin policy is not security best practices. This is for example purposes only.
Ideally, you would create a separate policy for this GCP service account with restricted access. For details
on limiting access through policies, see the Policy section.

dsv config edit

Add gcloud:gce-test as a user to the Default Admin Policy. Third-party accounts must be prefixed with the provider
name; in this case, the fully qualified username would be glcoud-gce:gce-test.

Note: Adding a user to the admin policy is not security best practices. This is for example purposes only.
Ideally, you would create a separate policy for this AWS user with restricted access. For details on limiting
access through policies, see the Policy section.

dsv config edit -e yaml

<snip>

- actions:

 - <.*>

 conditions: {}

 description: Default Admin Policy

 effect: allow

 id: xxxxxxxxxxxxxxxxxxxx

 meta: null

 resources:

 - <.*>

 subjects:

 - users:<gcloud-gce:gce-test|admin@company.com>

<snip>

GCE Authentication

SSH into the GCE and download the latest DSV CLI from this website DSV CLI.

For example, curl: https://dsv.secretsvaultcloud.com/downloads/cli/1.31.0/dsv-linux-x64 -o dsv

You may need to give yourself permissions to run the DSV binary, and it is also easier if you set the path.

Run dsv init filling out the desired values and selecting 6 GCP (federated) when prompted for the auth type.

Please enter auth type:

Delinea DevOps Secrets Vault Administrator Guide Page 131 of 284

Usage

https://dsv.secretsvaultcloud.com/downloads

(1) Password (local user)(default)

(2) Client Credential

(3) #{ThycoticOne}# (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (Federated)

Run dsv auth to verify authentication. A token will be displayed.

Run dsv secret read <path to any secret> to verify secret access.

Google Kubernetes Engine (GKE) Authentication

It follows that if you can have a GCE (aka a virtual server) authenticate to DSV, that there would be a similar way to
do that with a Google Kubernetes Engine (GKE) node.

Here is an example where we deploy a simple app in GKE that is able to authenticate to DSV.

In the GCE example above, we used the Compute Engine default service account. Here we suggest you create a
service account with at least the storage.objectViewer role for the project which will enable the ability to pull an
image from GCP registry. In this example, we created a service account named dsv-gce.

DSV Authentication provider

Using any computer with Admin DSV access, setup the DSV Authentication Provider.

Create a file named 'auth-gcp.txt' in the following format and substituting your GCP <ProjectID>.

{

 "name": "gcloud-gce",

 "type": "gcp",

 "properties": {

 "ProjectId": "myfirstproject-273119"

 }

}

Run dsv config auth-provider create --data @auth-gcp.txt to implement the Authentication Provider.

DSV User mapped to the GKE service account

Run dsv user create --username gce-test --provider gcloud-gce --external-id {dsv-gce service

account email} using the default service account email we saved earlier. You will get a response like this.

{

 "created": "2020-04-09T12:59:44Z",

 "createdBy": "users:thy-one:admin@company.com",

 "externalId": "dsv-gce@gcp-project-id.iam.gserviceaccount.com",

 "id": "19709b4e-2a13-4164-a930-81997b568036",

Delinea DevOps Secrets Vault Administrator Guide Page 132 of 284

Usage

 "lastModified": "2020-04-09T12:59:44Z",

 "lastModifiedBy": "users:thy-one:admin@company.com",

 "provider": "gcloud-gce",

 "userName": "gce-test",

 "version": "0"

}

Back to GCP to setup a GKE cluster

From the GCP Home page, in the left menu, hover over Kubernetes Engine and select Clusters. Then Create
Cluster. If this is the first one, then GCP will enable the GKE API for you.

When the form comes up, the default values can be used with the exception of the service account. To change this,
in the left navigation, select default-pool then Security where you will select the service account dsv-gce just
mentioned.

Click Create. It takes a few minutes for the cluster to be built.

Hello-App

Now create and deploy this Go-based hello app in this cluster node.

We will use the built-in GCP Cloud shell to connect since it comes with Docker, Kubectl, and connectivity to GCP all
setup. It even has a nice editor for the files we will create. To do this, go to the Kubernetes Engine then Clusters
page. From the list, there is a Connect button that opens a modal pop-up. In the modal, select Run in Cloud Shell.

Delinea DevOps Secrets Vault Administrator Guide Page 133 of 284

Usage

A terminal opens in the browser. Run the following steps.

mkdir hello-app

cd hello-app

cat > main.go

Now you can copy the code below into the terminal, but substitute the tenant_url to your URL, which will look
something like https://mycompany.secretsvaultcloud.com.

package main

import (

 "bytes"

 "encoding/json"

 "fmt"

 "io/ioutil"

 "log"

 "net/http"

 "os"

)

func main() {

 mux := http.NewServeMux()

 mux.HandleFunc("/", hello)

 port := os.Getenv("PORT")

 if port == "" {

 port = "8080"

 }

 log.Printf("Server listening on port %s", port)

 log.Fatal(http.ListenAndServe(":"+port, mux))

Delinea DevOps Secrets Vault Administrator Guide Page 134 of 284

Usage

}

func hello(w http.ResponseWriter, r *http.Request) {

 log.Printf("Serving request: %s", r.URL.Path)

 fmt.Println("-----------computeMetadata-----------")

 client := &http.Client{}

 req, err := http.NewRequest("GET",
"http://metadata.google.internal/computeMetadata/v1/project/project-id", nil)

 if err != nil{

 fmt.Fprintf(w, "Error creating Metadata Request: %s\n", err.Error())

 return

 }

 req.Header.Add("Metadata-Flavor", Google)

 resp, err := client.Do(req)

 if err != nil{

 fmt.Fprintf(w, "Error creating Metadata : %s\n", err.Error())

 return

 }

 body, err := ioutil.ReadAll(resp.Body)

 if err != nil{

 fmt.Fprintf(w, "Error parsing body computeMetadata: %s\n", err.Error())

 return

 }

 fmt.Fprintf(w, "Response computeMetadata: %s\n", string(body))

 fmt.Println("-----------computeMetadata-service-accounts-----------")

 tenant_url := "{tenant url}"

 client2 := &http.Client{

 }

 req2, err := http.NewRequest("GET",
"http://metadata.google.internal/computeMetadata/v1/instance/service-
accounts/default/identity", nil)

 if err != nil{

 fmt.Fprintf(w, "Error creating service-accounts Metadata Request: %s\n", err.Error
())

 return

 }

 req2.Header.Add("Metadata-Flavor", Google)

 q := req2.URL.Query()

 q.Add("audience", tenant_url)

 q.Add("format", "full")

 req2.URL.RawQuery = q.Encode()

 resp2, err := client2.Do(req2)

 if err != nil{

 fmt.Fprintf(w, "Error creating service-accounts Metadata : %s\n", err.Error())

 return

 }

 body2, err := ioutil.ReadAll(resp2.Body)

Delinea DevOps Secrets Vault Administrator Guide Page 135 of 284

Usage

 if err != nil{

 fmt.Fprintf(w, "Error parsing body service-accounts computeMetadata:
%s\n", err.Error())

 return

 }

 fmt.Fprintf(w, "Response service-accounts computeMetadata: %s\n", string(body2))

 fmt.Println("-----------DSV-----------")

 reqBody, _ := json.Marshal(map[string]string{

 "grant_type" : "gcp",

 "jwt" : string(body2),

 })

 dsvResp, err := http.Post(tenant_url+"/v1/token","application/json", bytes.NewBuffer
(reqBody))

 if err != nil || dsvResp == nil{

 if err!= nil {

 fmt.Fprintf(w, "Error creating dsv Request: %s\n", err.Error())

 }

 return

 }

 dsvBody, err := ioutil.ReadAll(dsvResp.Body)

 if err != nil{

 fmt.Fprintf(w, "Error parsing body dsv: %s\n", err.Error())

 } else{

 fmt.Fprintf(w, "Response from DSV: %s\n", string(dsvBody))

 }

}

Use ctrl+c to escape out.

Now create the docker file.

cat > Dockerfile

Copy the commands below in.

FROM golang:1.13-alpine

ADD . /go/src/hello-app

RUN go install hello-app

FROM alpine:latest

COPY --from=0 /go/bin/hello-app .

ENV PORT 8080

CMD ["./hello-app"]

Use ctrl+c to escape out.

Delinea DevOps Secrets Vault Administrator Guide Page 136 of 284

Usage

Run these commands to build and push the app to GKE. Substitute your project ID in.

docker build -t gcr.io/{PROJECT_ID}/hello-app:v1 .

docker push gcr.io/{PROJECT_ID}/hello-app:v1

The docker image is in GCP registry, so now create the Kubernetes deployment.

cat > k8.yml

Substitute your project id and paste the following.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-app

 labels:

 app: my-app

spec:

 replicas: 1

 selector:

 matchLabels:

 app: my-app

 template:

 metadata:

 name: my-app

 labels:

 app: my-app

 spec:

 containers:

 - name: my-app

 image: gcr.io/{PROJECT_ID}/hello-app:v1

 volumeMounts:

 - name: certs

 mountPath: /etc/ssl/certs

 volumes:

 - name: certs

 hostPath:

 path: /etc/ssl/certs

Use ctrl+c to escape out.

And deploy:

kubectl apply -f k8.yml

Make sure the pod is in running status.

Delinea DevOps Secrets Vault Administrator Guide Page 137 of 284

Usage

kubectl get pod

Now expose the app to the internet.

kubectl expose deployment my-app --type=LoadBalancer --port 80 --target-port 8080

kubectl get service

You should see:

It will take a few minutes for the <pending> to turn to an IP address.

Retry kubectl get service until you see IP address in EXTERNAL-IP.

Copy the EXTERNAL-IP for my-app and paste in your browser. You should a get DSV token.

At this point you are successfully logged into DSV from GKE. There are two tokens, the first one is the GKE
metadata token. The second one is the DSV authentication token. If you parse the DSV token at the jwt.io website
you should see the username gcloud-gce:gce-test to confirm.

Authentication: OIDC

Use dsv config auth-provider search --encoding yaml to see your current authentication settings.

The initial auth settings after your tenant is provisioned should look like this:

data:

- created: "2020-04-27T18:04:52Z"

 createdBy: ""

 id: bqjhth447csc72i4sm8g

 lastModified: "2020-04-27T18:04:52Z"

 lastModifiedBy: ""

 name: thy-one

Delinea DevOps Secrets Vault Administrator Guide Page 138 of 284

Usage

https://jwt.io/

 properties:

 baseUri: https://login.thycotic.com/

 clientId: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 clientSecret: xx

 type: thycoticone

 version: "0"

length: 1

limit: 25

OIDC Providers

Any OIDC compliant authentication provider should be configurable to work with Thycotic One and DevOps Secrets
Vault. Documented integrations are below.

Common Steps

For all OIDC authentication providers you will need to get their provider URL, client id, and client secret. You will
need to set in the authentication provider the callback URL that it will redirect to once authentication is complete.

To get your callback URL:

1. Sign into the cloud manager portal and go to Manage | Teams and click Organizations for your team.

2. Click Auth Providers and then click New. This opens a dialog.

3. Give it a name and copy the Callback URL provided. Do not save or cancel. You will be coming back to fill out
the rest of the fields.

Delinea DevOps Secrets Vault Administrator Guide Page 139 of 284

Usage

https://portal.thycotic.com/

Post OIDC Configuration Steps

Creating a User in Thycotic One and DSV

In order to log in using OIDC, the user must exist in the external provider, Thycotic One, and in DSV.

If your current user, such as your initial admin already exists in all places, then skip this section. If you want to add
another user to Thycotic One and DSV simultaneously, do the following steps.

1. In the DSV CLI run dsv user create --username useremail@company.com --provider thy-one.

2. This creates a user record in DSV and syncs it to Thycotic One. The User will get an email with a link to establish
their password.

3. In the cloud manager portal, you can see your users by logging in and clicking the Users link.

Logging In

Initialize the CLI.

dsv init

Add a new profile if you want to retain your default dsv profile.

When prompted for the authorization type, choose OIDC (federated).

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) #{ThycoticOne}# (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (federated)

When prompted for the authentication provider, press Enter to accept the default of thy-one

If you are on Windows or Mac OS, the CLI should automatically open a browser to the Google login page, otherwise
it will print out a URL that you can copy and paste into a browser to complete the process.

Log in using your Google credentials and your browser will redirect to http://localhost:8072/callback. The
CLI is listening on that port and will submit the returned authorization code to DSV to finish the login process.

Verify the login by running (omit the --profile flag if you overwrote your config).

dsv auth --profile profilename

Delinea DevOps Secrets Vault Administrator Guide Page 140 of 284

Usage

https://portal.thycotic.com/

Google Identity Provider Example

Configure Auth Providers

This example uses the Google Cloud Identity service.

1. Get the callback URL from Thycotic One# following the directions at Authentication:OIDC.

2. Go to the Google Cloud API Console and select a project if needed.

3. Select Credentials and click Create Credentials and click OAuth Client ID.

4. Choose Web Application.

5. Enter the information, setting the Authorized origin as https://portal.thycotic.com/ and Authorized
redirect as the callback URL copied from the Thycotic cloud manager portal. Follow the instructions to add these
URL's to the OAuth consent screen.

6. Save and copy the client id and client secret from the dialog into the credentials create dialog in Cloud Manager.
Your Provider URL in cloud manager should be set to https://accounts.google.com

Delinea DevOps Secrets Vault Administrator Guide Page 141 of 284

Usage

https://console.cloud.google.com/apis/dashboard

7. Save the credential create dialog in cloud manager and go back to Organizations. Click Credentials and then
edit your Credential. This is what is used by DSV to connect to the Thycotic One identity provider for
authentication.

8. Verify that there is a Post-Login Redirect URI for http://localhost:8072/callback. If there isn't, add one.
This is the callback used when logging into DSV with the CLI.

Delinea DevOps Secrets Vault Administrator Guide Page 142 of 284

Usage

Azure AD OIDC Example

1. Get the callback URL from Thycotic One following the directions at Authentication:OIDC

2. In your azure portal go to Azure Active Directory and then go to the App Registrations.

3. Click New Registration

4. Give your app a name and add the Callback URL from Thycotic One as the Redirect URI.

5. Click Register to save your app.

6. Go to your app's Certificates and Secrets and click New Client Secret.

7. Set the time period for the secret and click Add.

8. Copy the client secret, note that it will not be available after you leave the page.

9. Go to Authentication and check the box for ID Tokens in the implicit grant section and save.

10. Navigate to Overview and note the Application ID and Directory ID. The Application ID is your Client ID for
Thycotic One and the Directory ID will be part of your provider URL in the format
https://login.microsoftonline.com/{directory id}.

Delinea DevOps Secrets Vault Administrator Guide Page 143 of 284

Usage

11. Go back to the open dialog in Thycotic One and enter the Application ID for the Client ID, the generated secret
for Client Secret, and fill in the Provider URL and click Save Thycotic One.

12. When you sign into Thycotic One again you should now see an option for logging in with Azure AD.

Okta Identity Provider Example

This example uses Okta as a OIDC identity provider.

Okta OIDC connection

1. Get the callback URL from Delinea's Cloud Manager portal following the directions at Authentication:OIDC.

2. Log in to your Okta Admin console.

3. From the top menu bar, select Applications.

4. Select Add Application.

5. At the top right, select Create New App. A window opens.

6. For platform, select Web from the drop-down and the OpenID Connect radio button. Click Create.

Delinea DevOps Secrets Vault Administrator Guide Page 144 of 284

Usage

7. On the resulting screen, provide an Application name and optional logo. Enter the Delinea callback URL in the
box labeled Login redirect URIs. Click Save.

8. To the right of General Settings click Edit. Check the Implicit (Hybrid) box and it will expand. Then check Allow
ID Token with Implicit grant type.

9. In the Initiate login URI, Okta defaults to copying the Login Redirect URI, so highlight that box and copy
https://portal.thycotic.com. Click Save.

10. Copy the Client ID and Client secret for entry into the Delinea Cloud portal

Delinea DevOps Secrets Vault Administrator Guide Page 145 of 284

Usage

Retrieve the Issuer URL

11. In the second menu bar from the top, click Sign On and in the third box down, OpenID Connect ID Token, take
note of the URL by Issuer. Enter this into the Delinea Cloud portal. It will be something like
https://company.okta.com or https://company.oktapreview.com.

Delinea DevOps Secrets Vault Administrator Guide Page 146 of 284

Usage

Add Okta Users and Groups to the DSV Application

12. In second menu bar from the top, click Assignments

13. Click Assign and when it drops down, add users and/or groups that will use DevOps Secrets Vault. Of course,
you can always come back and add/remove people as needed.

Delinea DevOps Secrets Vault Administrator Guide Page 147 of 284

Usage

Finish the Connection on the Delinea One side

14. Go back to the Delinea Cloud Manger Portal where we started. Provide a Description and the issuer/provider
URL from step 11.

15. Provide the Client ID and Client Secret from step 10.

16. Check Enable.

17. Click Save.

Delinea DevOps Secrets Vault Administrator Guide Page 148 of 284

Usage

18. Click Back to Organizations.

19. Click Credentials.

20. Click Edit.

21. In the dialog that appears, and to the right of Post-Login Redirect URIs, click the +. In the prompt that appears,
type http://localhost:8072/callback.

Note: If you have already added this call back for another auth provider, then it should still be there so you
can skip these last steps (18-21).

Delinea DevOps Secrets Vault Administrator Guide Page 149 of 284

Usage

Authentication: Certificate

Authentication by certificate uses two API calls and does not send a private key.

Prerequisites

Authenticating with a certificate requires a certificate and a corresponding role. The user with this role can be
authenticated using a leaf certificate that contains role as a description field.

Role

First, a role is needed. Use this command to create a role.

dsv role create --name certauth

Or, use an existing role.

Certificate

In this step, generate a root certificate for signing leaf certificates. The root certificate can issue leaf certificates with
different roles.

Delinea DevOps Secrets Vault Administrator Guide Page 150 of 284

Usage

dsv pki generate-root --rootcapath root-for-auth --common-name root.auth --domains
root.system.a,root.system.b --maxttl 168

After that, prepare a client certificate with a corresponding role.

dsv pki leaf --common-name root.system.a --rootcapath root-for-auth --description certauth

The output should present a generated certificate, private key and SSH public key. The certificate and the private
key are required for authentication and must be saved.

CLI Configuration

After you've configured everything, you can initialize the CLI configuration. For that, run:

dsv init

Note: for testing purposes I recommend to create a separate profile when running the dsv init command
and after in all commands for testing use --profile=your-profile-name flag.

When prompted for the authentication type, choose x509 Certificate:

When prompted, input your certificate and the private key. Note that CLI only sends the certificate for
authentication. Private key will not be sent over the wire, and is used only to decrypt data to prove ownership of the
private key to the server.

Dynamic Secrets

Dynamic secrets are automatically generated at the time of request. This differs from the standard Secret store read
request where the credentials remain the same until changed by a user. They can be used when you need to
provide credentials to a user or resource, like a configuration tool, but the access should expire after a set period of
time.

Supported Types:

Delinea DevOps Secrets Vault Administrator Guide Page 151 of 284

Usage

IaaS Dynamic Secrets

n AWS

n Azure AD Graph

n Azure MS Graph

n GCP

Database Dynamic Secrets

n MSSQL

n MySQL

n Oracle

n PostgreSQL

n MongoDB

Linking

In order for dynamic secrets to be generated, they rely on a base secret stored in DSV that contains the provider's
credentials that are used to automatically generate the ephemeral access keys.

The linking is done through the attributes section in the secret JSON. For example, the following secret temp-
api has no data, but is linked to a different AWS IAM secret that contains the access and secret key information.
The linkConfig defines the type of linking and the linked secret path.

Attribute Description

linkConfig link type and path to the linked secret

Delinea DevOps Secrets Vault Administrator Guide Page 152 of 284

Usage

Attribute Description

linkConfig.linkType the only valid value is "dynamic"

linkConfig.linkedSecret secret path to the base credential

{

 "id": "cc619722-6538-4891-b0a6-2c7fa1776a67",

 "path": "dynamic:aws:creds:temp-api",

 "attributes": {

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "base:aws:creds:api-account"

 }

 },

 "description": "",

 "data": {

 }

}

Search for linked Secrets

To get a list of all dynamic secrets linked to a base secret, issue the command.

dsv secret search --query <base secret path> --search-links

IaaS Dynamic Secrets

DSV currently supports dynamic secrets for:

n AWS

n Azure AD Graph

n Azure MS Graph

n GCP

AWS Dynamic Secrets

AWS Dynamic Secrets generate a temporary access key, secret key, and session token. AWS Security Token
Service (STS) provides for either federate or assumeRole. federate and is ideal for assigning dynamic secrets
from a single AWS account. assumeRole allows cross account access in AWS, so a single set of credentials in DSV
can grant access to multiple AWS accounts.

These are the links to AWS documentation for each STS type.

n Federate

n Assume Role

Delinea DevOps Secrets Vault Administrator Guide Page 153 of 284

Usage

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Federate

Setup the AWS IAM User

For the federate example, create a new IAM User and note the access key and secret key.

Assign a policy to the IAM user with sts:GetFederationToken permission as well as any other permissions the
IAM user should have. In this example, we assign the user full CodeDeploy rights.

Note: When you get temporary tokens from AWS via GetFederationToken the resulting token's
permissions will be the intersection of the IAM User and the policy ARN specified on the dynamic decret. In
other words, the dynamic secret is only allowed the permissions that are in both the IAM policies and the
dynamic secret attached policy.

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"sts:GetFederationToken",
"codedeploy:*"

],
"Resource": "*"

}
]

}

Create the Base Secret

Next create a secret in DSV with the AWS IAM user access key, secret key, and region.

Create a file named secret_root.json substituting your values.

{
"accessKey": "youraccesskey",
"region": "us-east-1",
"secretKey": "yoursecretkey"

}

Create the secret via the CLI at a path of your choosing.

dsv secret create --path aws/base/api-account --data @secret_root.json --attributes '{"type":
"aws"}'

Create the Dynamic Secret

Attribute Description

policyArn AWS ARN of the policy to assign the federated user token. Can be customer or AWS
managed.

providerType federate

Delinea DevOps Secrets Vault Administrator Guide Page 154 of 284

Usage

ttl optional time to live in seconds of the generated token. If none is specified it will default to the
minimum of 900.

Note: If the TTL is set to less than 900 seconds, AWS will fail to create the token.

Now, you need to create a dynamic secret, which points to the base secret via its attributes. The dynamic secret
doesn't have any data stored in it because data is only populated when you read the secret.

Create an attributes JSON file named secret_attributes.json, substituting your values.

{
"linkConfig": {

"linkType": "dynamic",
"linkedSecret": "aws:base:api-account"

},
"policyArn": "arn:aws:iam::aws:policy/AWSCodeDeployReadOnlyAccess",
"providerType": "federate",
"ttl": 1200

}

Create a new Dynamic Secret

dsv secret create --path dynamic/aws/federate-api --attributes @secret_attributes.json

Now, anytime you read the dynamic secret, the data is populated with the temporary AWS access credentials.

dsv secret read --path dynamic/aws/federate-api

This returns a result like:

{
"attributes": {

"linkConfig": {
"linkType": "dynamic",
"linkedSecret": "aws:base:api-account"

},
"policyArn": "arn:aws:iam::aws:policy/AWSCodeDeployReadOnlyAccess",
"providerType": "federate",
"ttl": 1200

},
"data": {

"accessKey": "youraccesskey",
"expiration": "2020-02-06T18:49:17Z",
"secretKey": "yoursecretkey",
"sessionToken": "yoursessiontoken",
"ttl": 1200

},
"description": "",
"id": "yourId",
"version": "0"

}

You can validate the credentials only grant read access to Code Deploy by putting the credentials in a python script
and attempting to create a Code Deploy application:

import boto3
import json
from botocore.exceptions import ClientError

Delinea DevOps Secrets Vault Administrator Guide Page 155 of 284

Usage

sess = boto3.Session(
aws_access_key_id="accesskeyid",
aws_secret_access_key="secretaccesskey",
aws_session_token="yoursessiontoken"

)

client = sess.client("codedeploy")
resp = client.list_applications()
print("----list code deploy apps----")
print(json.dumps(resp["applications"], indent=4))

print("----create code deploy app----")
try:

resp = client.create_application(
applicationName="TestApp",
computePlatform="Server"

)
except ClientError as e:

print(e.response["Error"]["Code"])

The result should look something like this (depending on how many CodeDeploy apps exist):

----list code deploy apps----
[

"ExampleApp"
]
----create code deploy app----
AccessDeniedException

AWS Assume Role

In this example, we assume the IAM user and the role that the user will assume are in separate AWS accounts. This
is not required, but then it might make more sense to use the sts:Federatedapproach.

Setup the AWS IAM user

In the AWS account for the IAM user, create or modify an IAM user policy to include the sts:AssumeRole
permissions as well as any other permissions the user should have. In this example, we assign the user full
CodeDeploy rights.

Note: For setting up, if you don't know the role account ID or name at this point, Resources could be set to
all *, but best practices would be to come back and restrict the Resources to only the role once the name is
known as shown here.

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"codedeploy:*"
],
"Resource": "*"

},
{

"Effect": "Allow",
"Action": [

"sts:AssumeRole"

Delinea DevOps Secrets Vault Administrator Guide Page 156 of 284

Usage

],
"Resource": "arn:aws:iam::{account id of role}:role/{role-name}"

}
]

}

Setup the AWS IAM role

In the AWS account with the role that is to be used, create a new Role or identify an existing one with the proper
policies (not shown here).

Note: The sts:AssumeRole token will have permissions that intersect between the IAM user policy(ies)
and the role ploicy(ies) they assume. In other words, the token can't have permissions enabled by both the
user and role policies.

Additionally, this role must have a trust relationship setup between the IAM user in the first account and this role. It
might look like this:

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {

"AWS": "arn:aws:iam::{account id of user}:{iam-user}"
},
"Action": "sts:AssumeRole",
"Condition": {}

}
]

}

Create the Base Secret

Next, create a secret in DSV with the AWS IAM user access key, secret key, and region.

Create a file named secret_root.json substituting your values.

{
"accessKey": "youraccesskey",
"region": "us-east-1",
"secretKey": "secretkey"

}

Create the Secret via the CLI at a path of your choosing.

dsv secret create --path aws/base/api-account --data @secret_root.json --attributes '{"type":
"aws"}'

Create the Dynamic Secret

Attribute Description

roleArn AWS ARN of the role to assign the AssumeRole user token. Can be customer or AWS
managed.

Delinea DevOps Secrets Vault Administrator Guide Page 157 of 284

Usage

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

providerType assumeRole

ttl optional time to live in seconds of the generated token. If none is specified will default to 900.

Create the Dynamic Secret

Now you need to create a dynamic secret which points to the base secret via its attributes. The dynamic secret
doesn't have any data stored in it. Data is only populated when you read the secret.

Create or update the attributes json file named `secret_attributes.json substituting the ARN of the role you created.

{
"linkConfig": {

"linkType": "dynamic",
"linkedSecret": "aws:base:api-account"

},
"roleArn": "arn:aws:iam::{account id of role}:role/{role-name}",
"providerType": "assumeRole",
"ttl": 1200

}

Now, create the dynamic secret in the CLI using the JSON above.

dsv secret create --path dynamic/aws/assume-api --attributes @secret_attributes.json

Now, anytime you read the dynamic secret, the data is populated with the temporary AWS access credentials.

dsv secret read --path dynamic/aws/assume-api

This returns a result like:

{
"attributes": {

"linkConfig": {
"linkType": "dynamic",
"linkedSecret": "aws:base:api-account"

},
"roleArn": "arn:aws:iam::{account id of role}:role/{role-name}",
"providerType": "assumeRole",
"ttl": 1200

},
"data": {

"accessKey": "youraccesskey",
"expiration": "2020-02-06T18:49:17Z",
"secretKey": "yoursecretkey",
"sessionToken": "yoursessiontoken",
"ttl": 1200

},
"description": "",
"id": "yourid",
"version": "0"

}

Delinea DevOps Secrets Vault Administrator Guide Page 158 of 284

Usage

AAD Graph Dynamic Secrets

Note: As of June 30th, 2020, Microsoft stopped updating Azure Active Directory in favor of Azure
Microsoft Graph. Starting June 30th, 2022, all support and updates for Azure AD Graph will end, and
endpoints will no longer send responses. Delineastrongly recommends using the MS Graph API. See:
Azure Microsoft Graph to get started using DSV with MS Graph.

DevOps Secrets Vault relies on Azure service principals to provide dynamic secrets.

In order for DSV to generate dynamic secrets, a base secret must first be created using a service principal that has
permissions to manage other service principals. Those permissions include:

n "Owner" role for the subscription scope

n "Read and write all applications" permission in Azure Active Directory.

n Your account must have Microsoft.Authorization/*/Write access to assign an active directory application to a
role.

These permissions can be configured through the Azure Portal, CLI tool, or PowerShell. A guide to setting up the
Azure service principals in the Azure portal is provided in the Azure Service Principal section.

Create the Base Secret

The base secret holds the credentials required for DSV to perform API calls to Azure to query roles and
create/delete service principals.

Attribute Description

subscriptionId Required - The subscription ID holding the resources you wish to access using Azure Active
Directory.

tenantId Required - The tenant ID for Azure Active Directory. Azure lists it in places as Directory
(tenant) ID.

clientId Required - The OAuth2 client ID to connect to Azure. Azure lists it in places as Application
(client) ID.

clientSecret Required - The OAuth2 client secret to connect to Azure.

environment Optional - The Azure environment. If not specified, DSV will use Azure Public Cloud.

Create a file named secret_base.json substituting your values.

{

 "subscriptionId": "yoursubscriptionId",

 "tenantId": "yourtenantId",

 "clientId": "yourclientId",

 "clientSecret": "yoursecret"

}

Delinea DevOps Secrets Vault Administrator Guide Page 159 of 284

Usage

Create the base Secret via the CLI substituting a path of your choosing.

dsv secret create --path azure/base/api-account --data '@secret_base.json' --attributes '
{"type": "azure"}' --desc "azure base credential"

Dynamic Secrets

In DSV you can create dynamic secrets from either an existing service principal or create a temporary service
principal.

Note: Temporary vs Existing Service Principals: Azure does not use these terms, but DSV can either use a
service principal that you have already setup (existing) or DSV can create a service principal on-the-fly
(temporary) through Azure's role-based access control (RBAC).

If possible, a temporary service principal is preferred. Temporary service principals are independent from other
service principals and provide fine grained access and auditing. However, creating temporary service principals can
take up to 2 minutes before fully provisioned on Azure.

Use of an existing service principal is required in some cases when Azure services are not accessible through
Azure RBAC. In these cases, an existing service principal can be set up with the necessary access and DSV can
create a new client secret for this service principal each time the dynamic secret is read. One issue with this might
be that Azure limits the number of passwords for a given Application object, but this can be managed by reducing
the secret TTL. Also keep in-mind that Azure does not log actions related to each secret, so auditing is not a clean
as with temporary service principals.

Dynamic Secret for an Existing Service Principal

Create a dynamic secret that points to the base secret via its attributes.

Note: The dynamic secret does not have any data stored in it because data is only populated when you
read the secret.

Attribute Description

roleName Optional- Azure role name to be assigned to the existing service principal. Does not change
existing principal's role.

appId Required - Application (client) ID for an existing service principal

appObjectId Required - Application Object ID for an existing service principal

ttl Optional - Time to live in seconds of the generated token. If none is specified it will default to
900.

Delinea DevOps Secrets Vault Administrator Guide Page 160 of 284

Usage

1. Create an attributes JSON file named secret_attributes.json substituting your values.

{

 "linkConfig": { "linkType": "dynamic", "linkedSecret":
"azure:base:api-account" }, "roleName": "Contributor", "appId":
"f81b3c6d-2ce9-47d4-ad2d-fef8390792a2", "appObjectId" : "5fe218ee-cb58-4089-ac9f-
b1b68971ad73", "ttl": 900}

2. Create the dynamic secret via the CLI substituting the path of your choosing.

dsv secret create --path azure/dynamic/api-account --attributes '@secret_
attributes.json' --desc "azure dynamic credential"

3. Now anytime you read the dynamic secret, the data is populated with the temporary Azure access credentials.
The input

dsv secret read --path azure/dynamic/api-account

This returns the result:

{

 "id": "yourId",

 "path": "dynamic:azure:sp-static",

 "attributes": {

 "clientId": "yourpaddId",

 "appObjectId": "yourappObjectId",

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "azure:base:api-account"

 },

 "roleName": "Contributor",

 "ttl": 900

 },

 "data": {

 "appObjectId": "yourappObjectId",

 "clientId": "yourclientId",

 "clientsecret": "yoursecret",

 "role": "Contributor",

 "subscriptionId": "yoursubscriptionId",

 "tenantId": "yourtenantId",

 "ttl": 900

 },

 "created": "2020-02-24T16:42:34Z",

 "lastModified": "2020-03-04T19:21:04Z",

 "version": "13"

}

Delinea DevOps Secrets Vault Administrator Guide Page 161 of 284

Usage

Dynamic Secret for a Temporary Service Principal

Note: Creating service principal and assigning role in same request takes tens of seconds (over a minute
has been seen), The command has been broken down into two separate calls. In the first call the service
principal will be returned along with the task id that fired in the background for role assignment. You will
need to wait to use that temporary service principal or check via the Azure portal or via the DSV API
(provided below)

Attribute Description

roleName Optional - If no roleID is assigned, DSV will try to look-up the built-in Azure role by this name.

roleId Optional - Azure role id to be assigned to the temporary service principal. If not defined, then DSV
will attempt to look up the Azure built-in role by roleName. However, role ID takes precedence.
Either roleName or roleID required.

scope Required - Azure resource group to be assigned to the temporary service principal

ttl Optional - Time to live in seconds of the generated token. If none is specified it will default to 900.

Note: Azure built-in role names and IDs can be found here

1. Create an attributes JSON file named secret_attributes.json substituting your values.

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "azure:base:api-account"

 },

 "roleName": "Contributor",

 "roleId": "/subscriptions/<Azure Subscription
ID>/providers/Microsoft.Authorization/roleDefinitions/b24988ac-6180-42a0-ab88-
20f7382dd24c",

 "scope": "/subscriptions/<Azure Subscription ID>/resourceGroups/<resource
group name>",

 "ttl": 36000

}

2. Create a new dynamic secret via the CLI substituting the path of your choosing.

dsv secret create --path /azure/dynamic/api-account --attributes '@secret_attributes.json'
--desc "azure dynamic credential"

3. Now anytime you read the dynamic secret, the data is populated with the temporary Azure access credentials.

{

Delinea DevOps Secrets Vault Administrator Guide Page 162 of 284

Usage

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

 "id": "yourId",

 "path": "dynamic:azure:ac-api",

 "attributes": {

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "azure:base:api-account"

 },

 "roleId": "/subscriptions/6ca2adeb-7b44-4c7f-93fc-
2d5b9729a8c1/providers/Microsoft.Authorization/roleDefinitions/b24988ac-6180-42a0-ab88-
20f7382dd24c",

 "roleName": "Contributor",

 "scope": "/subscriptions/6ca2adeb-7b44-4c7f-93fc-2d5b9729a8c1/resourceGroups/dsv-
resource-group",

 "ttl": 36000

 },

 "description": "azure root credential",

 "data": {

 "appObjectId": "e463477c-7d90-4743-92f2-c7f44ede8ec9",

 "clientId": "945d25cb-7697-4648-b574-e8a660154269",

 "clientSecret": "yoursecret",

 "roleName": "Contributor",

 "roleId": "youroleId",

 "roleAssignmentStatus": "created",

 "roleAssignmentTaskId": "task_3da0a37c-0a1c-4ebd-8829-dbe7b988b36f",

 "servicePrincipleId": "1782611c-99c2-418b-b672-783e3cf8bd14",

 "subscriptionId": "6ca2adeb-7b44-4c7f-93fc-2d5b9729a8c1",

 "tenantId": "11f54b31-ffb9-42b5-8fda-76c734a7796c",

 "ttl": 36000

 },

 "created": "2020-02-12T20:57:44Z",

 "lastModified": "2020-03-04T19:27:45Z",

 "version": "12"

}

4. It takes some time for the temporary service principal to be created, so you can check using the Azure portal for
the new service principal or use the DSV API.

Use the roleAssignmentTaskId from above response.

method path

GET /v1/task/status/{roleAssignmentTaskId}

Sample Response

{

 "taskName": "azure_role_assignment",

 "state": "SUCCESS",

 "results": null,

Delinea DevOps Secrets Vault Administrator Guide Page 163 of 284

Usage

 "error": "",

 "createdAt": "2020-03-04T19:28:07.420285103Z"

}

Azure Service Principal

This is a step-by-step guide to creating an Azure service principal with the privileges necessary to enable Azure
credential generation.

An Azure service principal is an identity created for use with applications, hosted services, and automated tools to
access Azure resources.

These are the links to azure documentation on service principal:

n Service Principal

n Create Service Principal

Creating a Service Principal for the DSV Base Secret

1. Go to the Microsoft Azure portal and login.

2. Go to Azure Active Directory.

3. Click App registrations then New registration. Enter an application name and then click Register.

4. Take note of the Application (client) ID and Directory (tenant) ID. They are the DSV Base secret clientId and
tenantId parameters respectively.

5. Select Certifications & secrets then New client secret. Enter a description and when it should expire. Click
Add.

6. Take note of the newly generated secret which will be the clientSecret parameter in the DSV Base Secret.

7. Select API permissions and then Add a permission.

Delinea DevOps Secrets Vault Administrator Guide Page 164 of 284

Usage

https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://portal.azure.com/

8. Under Supported Legacy APIs, select Azure Active Directory Graph.

9. Select Delegated permissions, expand the User accordion, and then check the User.Read box.

10. Select Application permissions and expand the Application and Directory accordions. Check the
Application.ReadWrite.All and Directory.ReadWrite.All boxes.

11. Select Add permissions at the bottom of the page. This takes you back to the API Permissions page. Notice
that the Application permissions have warnings that those permissions are not yet granted.

12. Click Grant admin consent for Default Directory and then Yes. This step can be easy to miss.

Delinea DevOps Secrets Vault Administrator Guide Page 165 of 284

Usage

13. Navigate to Home | Subscriptions and take note of the Subscription ID that you will be using. This is the
subscriptionId in the DSV base secret.

14. Click into the Subscription ID then Access control (IAM) then Add in the Add role assignment box on the right.

15. Select Owner in the Role drop-down.

16. Select Azure AD user, group, or service principal in the Assign access to drop-down.

17. In the Select field, enter the application name or Application (client) ID saved previously and select it so that it
shows up under Selected Members below.

18. Click Save.

Delinea DevOps Secrets Vault Administrator Guide Page 166 of 284

Usage

Creating a Service Principal for a DSV Dynamic Secret

In the Azure Dynamic Secrets section, we discuss DSV using an existing service principal vs DSV creating a
temporary service principal. This is guidance on creating an existing service principal in the Azure portal. In the
case of the temporary service principal, no guidance in Azure is needed because DSV creates them.

1. Go to the Microsoft Azure portal and login.

2. Go to Azure Active Directory.

3. Click App registrations then New registration. Enter an application name and then click Register.

4. Take note of the Application (client) ID and Object ID. They are the DSV Dynamic Secret appId and
appObjectId parameters respectively.

Delinea DevOps Secrets Vault Administrator Guide Page 167 of 284

Usage

https://portal.azure.com/

5. Navigate to Home > Subscriptions.

6. Click into the Subscription ID that you are using and then Access control (IAM) then Add in the Add role
assignment box on the right.

7. Select Role drop-down, select the role you wish to provide. In this example, we will use Contributor.

8. Select Azure AD user, group, or service principal in the Assign access to drop-down.

9. In the Select field, enter the application name or Application (client) ID saved previously and select it so that it
shows up under Selected Members below.

10. Click Save.

Microsoft Graph Dynamic Secrets

To create dynamic secrets for Azure Microsoft Graph:

n Create an Azure Service Principal for Microsoft Graph.

n Create a base secret.

Delinea DevOps Secrets Vault Administrator Guide Page 168 of 284

Usage

n Create the dynamic secret.

Create the Base Secret

The base Secret holds the credentials required for DSV to perform API calls to Azure to query roles and
create/delete service principals.

Attribute Description

subscriptionId Required - The subscription ID holding the resources you wish to access using Azure Active
Directory.

tenantId Required - The tenant ID for Azure Active Directory. Azure lists it in places as "Directory
(tenant) ID"

clientId Required - The OAuth2 client ID to connect to Azure. Azure lists it in places as "Application
(client) ID"

clientSecret Required - The OAuth2 client secret to connect to Azure.

environment Optional - The Azure environment. If not specified, DSV will use Azure Public Cloud.

Create a file named secret_base.json substituting your values:

{

 "subscriptionId": "yoursubscriptionId",

 "tenantId": "yourtenantId",

 "clientId": "yourclientId",

 "clientSecret": "yoursecret"

}

Create the base Secret via the CLI substituting a path of your choosing:

 dsv secret create --path azure/base/api-account --data '@secret_base.json' --
attributes '{"type": "azure"}' --desc "azure base credential"

Dynamic Secret for a Temporary Service Principal

Attribute Description

appRoleId Required - The id of the appRole (defined on the resource service principal) to assign to the
client service principal.

ResourceID Required - The id of the resource servicePrincipal (the API) which has defined the app role (the
application permission).

Delinea DevOps Secrets Vault Administrator Guide Page 169 of 284

Usage

Attribute Description

ttl Optional - Time to live in seconds of the generated token. If none is specified it will default to
900.

1. Create an attributes json file named secret_attributes.json substituting your base secret path, resourceID,
and AppRoleID.

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "azure:base:msgraph"

 },

 "ttl": 360,

 "resourceId": "resourceID",

 "appRoleId": "appRoleId",

 "msApiType": "msgraph"

}

2. Create a new Dynamic Secret via the CLI substituting the path of your choosing.

dsv secret create --path /azure/dynamic/api-graph --attributes '@secret_attributes.json' -
-desc "azure dynamic credential"

3. Now anytime you read the dynamic Secret, the data is populated with the temporary azure access credentials.

{

 "id": "8247cc11-7465-49de-9d49-959f1d2e7e39",

 "path": "dynamic:azure:ac-graph",

 "attributes": {

 "appRoleId": "c6d6abd5-4021-4d46-8f18-xxxxxxxxxxx",

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "azure:base:api-graph"

 },

 "msApiType": "msgraph",

 "resourceId": "8c828069-ab9c-4a3b-b30e-xxxxxxxxxxxx",

 "ttl": 360

 },

 "description": "azure root credential",

 "data": {

 "clientId": "xxxxxxxx-eaa5-4c82-a177-f526742f8881",

 "clientSecret": "secret key",

 "displayName": "dsv-7c89bba6-d61e-4de8-9c10-a4735f8eebff",

 "servicePrincipalId": "xxxxxxx-2e29-4bad-a908-a5cf0c7eaebb",

 "subscriptionId": "your subscriptionId",

 "tenantId": "your tenantId"

 },

Delinea DevOps Secrets Vault Administrator Guide Page 170 of 284

Usage

 "created": "2020-12-13T03:31:07Z",

 "lastModified": "2021-01-12T19:50:24Z",

 "createdBy": "users:user1",

 "lastModifiedBy": "users:user1",

 "version": "15"

}

Azure Service Principal

This is a step-by-step guide to creating an Azure service principal with the privileges necessary to enable Azure
Microsoft Graph credential generation.

An Azure service principal is an identity created for use with applications, hosted services, and automated tools to
access Azure resources.

Creating a Service Principal for the DSV Base Secret

1. Login to the Microsoft Azure portal.

2. Go to Azure Active Directory.

3. Click App registrations, then New registration. Enter an application name and then click Register.

4. Take note of the Application (client) ID and Directory (tenant) ID. They are the DSV Base secret clientId and
tenantId parameters, respectively.

5. Select Certifications & secrets then New client secret. Enter a description and expiration date. Click Add.

6. Take note of the newly generated secret which will be the clientSecret parameter in the DSV Base Secret.

7. Select API permissions and then Add a permission.

8. Under Microsoft Graph APIs, first select Delegated permissions on the left. Expand the Application drop-down
and check the Application.Read.All and Application.ReadWrite.All boxes.

Delinea DevOps Secrets Vault Administrator Guide Page 171 of 284

Usage

https://portal.azure.com/

9. Now, select Application permissions on the right. Expand both the Application and AppRoleAssignment drop-
down, and then check the Application.Read.All, Application.ReadWrite.All, and
Application.ReadWrite.OwnedBy boxes under Application and the AppRoleAssignment.ReadWrite.All box
under AppRoleAssignment.

Delinea DevOps Secrets Vault Administrator Guide Page 172 of 284

Usage

10. Select Add permissions at the bottom of the page. This takes you back to the API Permissions page. Notice
that the Application permissions have warnings that those permissions are not yet granted.

11. Click Grant admin consent and then Yes (You will need administrative privileges to complete this step).

12. The completed API permissions should look like this:

Delinea DevOps Secrets Vault Administrator Guide Page 173 of 284

Usage

13. Navigate to Home > Subscriptions and take note of the Subscription ID that you will be using. This is the
subscriptionId in the DSV Base Secret.

Add appRole in Root Application or Any Application

In the Azure Dynamic Secrets section, we discuss DSV using an "existing service principal" vs DSV creating a
"temporary service principal." This is guidance on creating an existing service principal in the Azure portal. In the
case of the temporary service principal, no guidance in Azure is necessary because DSV will create them.

Note: Any existing or new application can be used in place of the base service principal.

1. Go to the Microsoft Azure portal and login.

2. Go to Azure Active Directory.

3. Click App registrations.

4. Click on the new application that you created in the Service Principal Guide, or on a previously existing
application.

5. Click Create App Role to create a new one, or select an existing appRole.

6. Take note of the ID. That is the DSV Dynamic Secret appRoleId parameter.

Delinea DevOps Secrets Vault Administrator Guide Page 174 of 284

Usage

https://portal.azure.com/

7. Navigate to Active Directory > Enterprise applications.

8. Select the application name that you configured in the above steps.

9. Take note of the Object ID. This is the DSV Dynamic Secret resourceId parameter.

GCP Dynamic Secrets

There are two ways to generate dynamic GCP secrets:

n Token Generation

n Service Account Key

Token generation creates an access token that can be used as the bearer token in the GCP API. Service account
key generation creates a new key on a service account in GCP and then deletes the key after the specified time to
live is up.

Setup

Create a GCP Service Account

For setting up GCP token or key based dynamic secrets, you will first need a service account in GCP.

n Go to Service Accounts under IAM & Admin in the GCP console.

n Click Create Service Account and grant it access to a project.

Delinea DevOps Secrets Vault Administrator Guide Page 175 of 284

Usage

https://cloud.google.com/iam/docs/creating-short-lived-service-account-credentials
https://cloud.google.com/iam/docs/creating-managing-service-account-keys

n Generate a key for the service account and save it.

n Under IAM Assign the Service Account Key Admin and Service Account Token Creator roles to the new
service account. Also give it Storage Admin which will be used for testing the dynamic secrets.

Create the Base Secret

Next create a Secret in DSV with the AWS IAM user access key, secret key, and region.

Create a file named secret_root.json substituting your values from the service key file.

{

 "projectId": "test-project-1234",

 "type": "service_account",

 "privateKeyId": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",

 "privateKey": "-----BEGIN PRIVATE KEY-----\n...\n-----END PRIVATE KEY-----\n",

 "clientEmail": "dsv-test@test-project-1234.iam.gserviceaccount.com",

 "clientId": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxx",

 "tokenUri": "https://oauth2.googleapis.com/token"

}

Create the Secret via the CLI at a path of your choosing.

dsv secret create --path gcp/base/svc-account --data @secret_root.json --attributes '
{"type": "gcp"}'

OAuth Access Token

Attribute Description

scopes Array of GCP OAuth 2.0 scopes for the dynamic token

providerType token

Now you need to create a dynamic secret, which points to the base Secret via its attributes. The dynamic secret
doesn't have any data stored in it because data is only populated when you read the secret.

Create an attributes JSON file named secret_attributes.json substituting your values.

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "gcp:base:svc-account"

 },

 "providerType": "token",

 "scopes": [

 "https://www.googleapis.com/auth/devstorage.full_control"

]

Delinea DevOps Secrets Vault Administrator Guide Page 176 of 284

Usage

https://developers.google.com/identity/protocols/oauth2/scopes

}

Create a new dynamic secret.

dsv secret create --path dynamic/gcp/token --attributes @secret_attributes.json

Now, anytime you read the dynamic secret, the data is populated with the temporary access token that is valid for
one hour.

dsv secret read --path dynamic/gcp/token

This returns a result like:

{

 "id": "ba2f1fc7-c16f-4062-a216-3116d1a42545",

 "path": "dynamic:gcp:token",

 "attributes": {

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "gcp:base:svc-account"

 },

 "providerType": "token",

 "scopes": [

 "https://www.googleapis.com/auth/devstorage.full_control"

]

 },

 "description": "gcp dynamic token secret",

 "data": {

 "access_token": "youraccesstoken",

 "expiry": "2020-04-26T22:04:32.3897188Z",

 "ttl": 3600

 }

}

You can validate the credentials are able to read storage buckets by making an API request with the access token
in the Authorization header to the storage API for your project, substituing your values.

curl -H 'Authorization: Bearer {access token}'
https://storage.googleapis.com/storage/v1/b?project={project id}

Service Account Key

In this example, rather than generating an OAuth token we will generate a new key in JSON format for the service
account. This creates a new key in GCP that can be used to authenitcate with the gcloud CLI or other SDKs. Once

Delinea DevOps Secrets Vault Administrator Guide Page 177 of 284

Usage

the ttl for the dynamic secret expires, the key will be removed.

Service accounts in GCP are limited to 10 keys per account. If you exceed this, you will get a 400 error reading the
dynamic secret with a message of unable to create new service account key googleapi: Error 429:

Maximum number of keys on account reached., rateLimitExceeded.

To help avoid this, ensure that you keep ttls relatively low for service account keys to ensure they get cleaned up.
You can also create multiple service accounts with the same permissions in GCP and then create a base secret for
each one to help spread the number of keys across service accounts.

Create the Base Secret

For this example, we will reuse the base secret from above. If you haven't done this already, then follow those
directions to create the base secret now.

Create the Dynamic Secret

Attribute Description

providerType serviceKey

ttl required time to live in seconds of the generated token.

Create or update the attributes JSON file named secret_attributes.json changing the provider type to
serviceKey and replacing the

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "gcp:base:svc-account"

 },

 "providerType": "serviceKey",

 "ttl": 3600

}

Now create the dynamic secret in the CLI using the JSON above.

dsv secret create --path dynamic/gcp/secret-svc-key --attributes @secret_attributes.json

Now, anytime you read the dynamic secret, the data is populated with the GCP service key.

dsv secret read --path dynamic/gcp/secret-svc-key

This returns a result like:

Delinea DevOps Secrets Vault Administrator Guide Page 178 of 284

Usage

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "gcp:base:svc-account"

 },

 "providerType": "serviceKey",

 "ttl": 3600

 },

 "data": {

 "keyAlgorithm": "KEY_ALG_RSA_2048",

 "keyOrigin": "GOOGLE_PROVIDED",

 "name": "projects/test-proj-1234/serviceAccounts/dsv-test@test-prog-
1234.iam.gserviceaccount.com/keys/0e4c690b713bfe0ed517ed56cba4814afd35a8ad",

 "privateKeyData":

{

 "client_id": "xxxxxxxxxxxxxxxxx",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dsv-
test%40test-proj-1234.iam.gserviceaccount.com",

 "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",

 "client_email": "dsv-test@test-project-1234.iam.gserviceaccount.com",

 "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADAN...iV7quFF35ILBG+w=\n-----
END PRIVATE KEY-----\n",

 "private_key_id": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",

 "token_uri": "https://oauth2.googleapis.com/token",

 "type": "service_account",

 "project_id": "test-proj-1234"

 },

 "ttl": 3600

 },

 "description": "",

 "id": "34fb64d7-18da-453d-9487-3d1c082ba372",

 "version": "0"

}

Copy the inner JSON of privateKeyData into a file and name it svc-account.json. Then, using the gcloud CLI, run
gcloud auth activate-service-account --key-file svc-account.json to test if the generated key is valid.
If so, you will get a reply similar to Activated service account credentials for: [service account email].

After the ttl expires, you can check the keys on the service account and they will be removed. Note that there may
be some delay between when the ttl expires and when the key is removed from the service account.

Database Dynamic Secrets

Both Database Dynamic Secrets and IaaS Dynamic Secrets provide temporary credentials for very specific uses.
The possible damage done by leaked credentials is severely limited to due to granular policies and short time-to-
live. However, IaaS platforms provide mechanisms for temporary credentials with fine-grained policies, and most
databases do not. Therefore, DSV provides a way to provide temporary credentials by creating and deleting users
in a just-in-time manner.

Delinea DevOps Secrets Vault Administrator Guide Page 179 of 284

Usage

DSV Engine Required

Database Dynamic Secrets require the deployment of the DSV Engine. See the instructions at DSV Engine.

Microsoft SQL Dynamic Secrets

Once you have installed the DSV Engine, you can use DSV to create Dynamic Secrets. DSV currently supports
contained MSSQL databases. DSV does not currently support traditional MSSQL databases.

Dynamic Secret Setup

1. Create a Base Secret

In the CLI, create a base secret containing the credentials of the MSSQL account that will be responsible for
creating new accounts on a given server. You must mark the secret as a MSSQL root secret by including type
with a value of mssql. All fields in the data object are required.

Note: Port is an integer and does not require quotations.

Delinea DevOps Secrets Vault Administrator Guide Page 180 of 284

Usage

Example Base Secret:

{

 "attributes": { "type": "mssql" }, "data": { "database":
"TestContainedDB", "password": "yourpassword", "port": 1433, "server":
"localhost", "username": "yourusername" }}

2. Create a new dynamic secret. The dynamic secret will be linked to the root secret. Use the following format:

Dynamic Secret Example

{

 "attributes": {

 "grantPermissions": {

 "what": "SELECT",

 "where": "exampletable"

 },

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "mssql:base2"

 },

 "pool": "pool1",

 "ttl": 900,

 "userPrefix": "test"

 }

}

Dynamic Secret Guide

1. grantPermissions: Specifies the permissions assigned by MSSQL to the new user account.

n what: Defines the database access permissions the user will have in MSSQL. Permissions may include
CONNECT, CREATE, SELECT, or other SQL statements.

n where: Defines the location within the database for permissions to apply.

2. linkType is always dynamic for dynamic secrets.

3. linkedSecret should be the path of the root secret.

4. pool: Designates the Engine pool that DSV will use to generate dynamic secrets.

5. ttl: Specifies the number of seconds for which the new account will exist before the engine automatically
deletes it.

Note: ttlmust be set at or above 900.

6. userPrefix An optional key whose value is a string prepended to all MSSQL account usernames created from
the dynamic secret.

7. data: This field remains blank for dynamic secrets.

Delinea DevOps Secrets Vault Administrator Guide Page 181 of 284

Usage

Sending a MSSQL task to an engine

Read the MSSQL dynamic secret. A randomly chosen engine in the engine pool should receive the task and
perform it. The engine attempts to create a MSSQL account and reports back success or failure. On success, the
user also receives the new working credentials. As long as there is at least one running engine in a given pool, an
engine will receive a MSSQL account revocation task and delete the account once its TTL expires.

Third Party Reference

For contained server configuration details, refer to MSSQL Database Documentation

MySQL Dynamic Secrets

Once you have installed the DSV Engine, you can use DSV to create dynamic secrets.

Base Secret

Base secret data defines how to establish a connection with a MySQL server. All values are required and will be
used to build a connection string in a URL format. A type must be set in attributes of a base secret. For MySQL, the
type field in attributes should always be mysql.

Create a file named mysql_base.json, substituting your values:

{

 "host": "your.host",

 "port": 3306,

 "username": "mysqlusr",

 "password": "myp@ssword"

}

Create a secret using the CLI at a path of your choosing:

dsv secret create \

 --path db:mysql:root \

 --data @mysql_base.json \

 --attributes '{"type": "mysql"}'

Dynamic Secret

A dynamic secret will be linked to the base secret. One base secret can have many dynamic secrets linked to it.

Create a file named mysql_dynamic1.json, substituting your values:

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "db:mysql:root"

 },

Delinea DevOps Secrets Vault Administrator Guide Page 182 of 284

Usage

https://docs.microsoft.com/en-us/sql/relational-databases/databases/contained-databases?view=sql-server-ver15

 "grantPermissions": {

 "what": "SELECT",

 "where": "*.*"

 },

 "pool": "pool1",

 "ttl": 1000,

 "userPrefix": "usr"

}

Create a dynamic secret using the CLI at a path of your choosing:

dsv secret create --path db:mysql:dynamic1 --attributes @mysql_dynamic1.json

Note: when creating a dynamic secret the data field should be empty.

Attributes description:

1. linkConfig: denotes that it is a dynamic secret with a link to a base secret:

n linkType: should always be dynamic

n linkedSecret: sets a path to base secret

2. grantPermissions: defines access privileges

n what: a specific privilege type, e.g. ALL, INSERT, UPDATE, DELETE

n where: a privilege level, e.g. *.*, mydb.*, mydb.mytbl

3. pool: a pool name to use

4. ttl: a number of seconds before the engine automatically deletes new credentials, must be set at or above
900

5. userPrefix: an optional field that defines a prefix for a new username

To create a new user, the CREATE USER command is used.

To assign privileges, the GRANT command is used.

GRANT <"what"> ON <"where"> TO <"username">;

Sending a MySQL Task to an Engine

Read the MySQL dynamic secret. A randomly chosen engine in the engine pool should receive the task and
perform it. The engine attempts to create a MySQL account and reports back success or failure. On success, the
user also receives the new working credentials. As long as there is at least one running engine in a given pool, an
engine will receive a MySQL account revocation task and delete the account once its TTL expires.

Delinea DevOps Secrets Vault Administrator Guide Page 183 of 284

Usage

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

List MySQL Base Secrets

To find all base secrets that are related to MySQL run:

dsv secret search --query "mysql" --search-field "attributes.type"

List Dynamic Secrets

To find all dynamic secrets that are linked to a specific base secret run:

dsv secret search --query "db:mysql:root" --search-links

Read Dynamic Secret Attributes

Using the secret read CLI command to read a dynamic secret will initiate a creation of a new credentials. To read
a dynamic secret use the secret describe CLI command instead.

Example:

dsv secret describe db:postgresql:dynamic1

The secret describe does not return the secret data field, but for dynamic secrets it is always empty.

Third Party Reference

For server configuration details, refer to MySQL Database Documentation

Oracle Dynamic Secrets

Oracle Engine Requirements:

The Oracle database must have Oracle Instant Client installed before running the dsv-engine. DSV only supports
the linux-x64 binary distribution. For other platforms, use docker distribution.

Running the Oracle Engine

To run the DSV Engine with Oracle Instant Client

1. Install oracle client (https://www.oracle.com/database/technologies/instant-client/downloads.html)

2. Register the engine:

dsv-engine-linux-x64-oracle register --engineName engine01 --secretsvaultcloud.com --
tenant acme --userToken <your jwt>

3. Run the Engine:

Engine run dsv-engine run

Delinea DevOps Secrets Vault Administrator Guide Page 184 of 284

Usage

https://dev.mysql.com/doc/

Docker Setup - PULL from ECR

To run the DSV Engine using Docker

1. Login to AWS ECR: aws ecr get-login --region us-east-1

2. Login to Docker.

3. Pull the Engine: docker pull 661058921700.dkr.ecr.us-east-1.amazonaws.com/dsv-engine-

oracle:latest

4. Run the Engine:

run --env ENGINE_NAME=myengine --env DSV_POOL=pool1 --env DSV_TENANT=mal --env DSV_
URL=devbambe.com --env DSV_TOKEN=<jwt> 661058921700.dkr.ecr.us-east-1.amazonaws.com/dsv-
engine-oracle-dev:latest

Oracle Dynamic Secret Setup

To create a dynamic secret in Oracle, first create a base secret.

Create a Base Secret

In the CLI, create a base secret containing the credentials of the account that will be responsible for creating new
accounts on a given server. You must mark the secret as an Oracle root secret by including type with a value of
oracle. All fields in the data object are required.

Note: Port is an integer and does not require quotations.

Example Base Secret:

{

 "data": {

 "password": "your password",

 "username": "your username",

 "host": "host",

 "servicename": "servicename",

 "port": 1521},

 "description": "oracle root credential",

 "attributes": {

 "type": "oracle"

 }

}

Create a new dynamic secret.

The dynamic secret will be linked to the root secret. The grantPermissions field will change depending on the
privileges the secret is granting.

Delinea DevOps Secrets Vault Administrator Guide Page 185 of 284

Usage

Dynamic Secret Examples

System Privilege Dynamic Secret Example

{

 "description": "oracle system dynamic credential",

 "attributes": {

 "grantPermissions": {

 "what": "CONNECT",

 "where": "none",

 "type": "system"

 },

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "oracle:base:awsroot"

 },

 "pool": "pool1",

 "ttl": 900

 },

 "data": {},

 }

System Privilege Dynamic Secret Guide

1. grantPermissions: Specifies the permissions assigned by Oracle to the new user account.

n what: Defines the database access permissions the user will have in Oracle. Permissions may include
CONNECT, CREATE, SELECT, or other SQL statements.

n where: Defines the location within the database for object permissions to apply. For system and role
secrets, the field should be "none".

n type: Defines the object permissions within Oracle. Use system to grant system privileges.

2. linkType is always dynamic for dynamic secrets.

3. linkedSecret should be the path of the root secret.

4. pool: Designates the Engine pool that DSV will use to generate dynamic secrets.

5. ttl: Specifies the number of seconds for which the new account will exist before the engine automatically
deletes it.

Note: ttlmust be set at or above 900.

6. userPrefix An optional key whose value is a string prepended to all Oracle account usernames created from
the dynamic secret.

7. data: This field remains blank for dynamic secrets.

Role Privilege Dynamic Secret Example

{

Delinea DevOps Secrets Vault Administrator Guide Page 186 of 284

Usage

 "description": "oracle role dynamic credential",

 "attributes": {

 "grantPermissions":{

 "what" : "oraclerole",

 "where": "none",

 "type": "role"

 },

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "oracle:base:awsroot"

 },

 "pool": "pool1",

 "ttl": 900

 }

}

Role Privilege Dynamic Secret Guide

1. grantPermissions: Specifies the permissions assigned by Oracle to the new user account.

n what: Defines the Role access the user will have in Oracle. Set this as the predefined role name.

n where: Defines the location within the database for object permissions to apply. For system and role
secrets, the field should be "none".

n type: Defines the object permissions within Oracle. Use role to grant role privileges.

2. linkType is always dynamic for dynamic secrets.

3. linkedSecret should be the path of the root secret.

4. pool: Designates the Engine pool that DSV will use to generate dynamic secrets.

5. ttl: Specifies the number of seconds for which the new account will exist before the engine automatically
deletes it.

Note: ttlmust be set at or above 900.

6. userPrefix An optional key whose value is a string prepended to all Oracle account usernames created from
the dynamic secret.

7. data: This field remains blank for dynamic secrets.

Object Privilege Dynamic Secret Example

{

 "description": "oracle object dynamic credential",

 "attributes": {

 "grantPermissions":{

 "what" : "SELECT",

 "where": "ADMIN.EMPLOYEE",

 "type": "object"

Delinea DevOps Secrets Vault Administrator Guide Page 187 of 284

Usage

 },

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "oracle:base:awsroot"

 },

 "pool": "pool1",

 "ttl": 900

 }

}

Object Privilege Dynamic Secret Guide

1. grantPermissions: Specifies the permissions assigned by Oracle to the new user account.

n what: Defines the database access permissions the user will have in Oracle. Permissions may include
CONNECT, CREATE, SELECT, or other SQL statements.

n where: Defines the object within Oracle for which the user will have privileges. The example secret will allow
the user to select the "ADMIN.EMPLOYEE" object within Oracle.

n type: Defines the object permissions within Oracle. Use object to grant object privileges.

2. linkType is always dynamic for dynamic secrets.

3. linkedSecret should be the path of the root secret.

4. pool: Designates the Engine pool that DSV will use to generate dynamic secrets.

5. ttl: Specifies the number of seconds for which the new account will exist before the engine automatically
deletes it.

Note: ttlmust be set at or above 900.

6. userPrefix An optional key whose value is a string prepended to all Oracle account usernames created from
the dynamic secret.

7. data: This field remains blank for dynamic secrets.

Sending an Oracle Task to Engine

Read the Oracle dynamic secret. A randomly chosen engine in the engine pool should receive the task and perform
it. The engine attempts to create a Oracle account and reports back success or failure. On success, the user also
receives the new working credentials. As long as there is at least one running engine in a given pool, an engine will
receive a Oracle account revocation task and delete the account once its TTL expires.

Third Party Reference

For server configuration details, refer to Oracle Database Documentation

PostgreSQL Dynamic Secrets

Once you have installed the DSV Engine, you can use DSV to create dynamic secrets.

Delinea DevOps Secrets Vault Administrator Guide Page 188 of 284

Usage

https://docs.oracle.com/en/database/

Base Secret

Base secret data defines how to establish a connection with a PostgreSQL server. All values are required and will
be used to build a connection string in a URL format. A type must be set in attributes of a base secret. For
PostgreSQL, the type field in attributes should always be postgres.

Create a file named postgres_base.json, substituting your values:

{

 "host": "your.host",

 "port": 5432,

 "database": "postgres",

 "username": "postgres",

 "password": "myp@ssword"

}

Create a secret using the CLI at a path of your choosing:

dsv secret create \

 --path db:postgresql:root \

 --data @postgres_base.json \

 --attributes '{"type": "postgres"}'

Dynamic Secret

A dynamic secret will be linked to the base secret. One base secret can have many dynamic secrets linked to it.

Create a file named postgres_dynamic1.json, substituting your values:

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "db:postgresql:root"

 },

 "grantPermissions": {

 "what": "ALL PRIVILEGES",

 "where": "postgres"

 },

 "pool": "pool1",

 "ttl": 1000,

 "userPrefix": "usr"

}

Create a dynamic secret using the CLI at a path of your choosing:

dsv secret create --path db:postgresql:dynamic1 --attributes @postgres_dynamic1.json

Delinea DevOps Secrets Vault Administrator Guide Page 189 of 284

Usage

Note: when creating a dynamic secret the data field should be empty.

Attributes description:

1. linkConfig: denotes that it is a dynamic secret with a link to a base secret:

n linkType: should always be dynamic

n linkedSecret: sets a path to base secret

2. grantPermissions: defines access privileges

n what: a specific privilege, e.g. SELECT, INSERT, UPDATE, DELETE

n where: a database object, e.g. a table name, a view name, a database name

3. pool: a pool name to use

4. ttl: a number of seconds before the engine automatically deletes new credentials, must be set at or above
900

5. userPrefix: an optional field that defines a prefix for a new username

To create a new user, the CREATE USER command is used.

To assign privileges, the GRANT command is used.

GRANT <"what"> ON <"where"> TO <"username">;

Sending a PostgreSQL Task to Engine

Read the PostgreSQL dynamic secret. A randomly chosen engine in the engine pool should receive the task and
perform it. The engine attempts to create a PostgreSQL account and reports back success or failure. On success,
the user also receives the new working credentials. As long as there is at least one running engine in a given pool,
an engine will receive a PostgreSQL account revocation task and delete the account once its TTL expires.

List PostgreSQL Base Secrets

To find all base secrets that are related to PostgreSQL run:

dsv secret search --query "postgres" --search-field "attributes.type"

List Dynamic Secrets

To find all dynamic secrets that are linked to a specific base secret run:

dsv secret search --query "db:postgresql:root" --search-links

Delinea DevOps Secrets Vault Administrator Guide Page 190 of 284

Usage

https://www.postgresql.org/docs/current/sql-createuser.html
https://www.postgresql.org/docs/current/sql-grant.html

Read Dynamic Secret Attributes

Using the secret read CLI command to read a dynamic secret will initiate a creation of a new credentials. To read
a dynamic secret use the secret describe CLI command instead.

Example:

dsv secret describe db:postgresql:dynamic1

The secret describe does not return the secret data field, but for dynamic secrets it is always empty.

Third Party Reference

For server configuration details, refer to Postgresql documentation.

MongoDB Dynamic Secrets

Once you have installed the DSV Engine, you can use DSV to create dynamic secrets.

Base Secret

Base secret data defines how to establish a connection with a MongoDB server. All values are required and will be
used to build a connection string in a URL format. A type must be set in attributes of a base secret. For MongoDB,
the type field in attributes should always be mongo.

Create a file named mongodb_base.json, substituting your values:

{

 "host": "your.host",

 "port": 8081,

 "username": "mongodb",

 "password": "myp@ssword"

}

Create a secret using the CLI at a path of your choosing:

dsv secret create \

 --path db:mongodb:root \

 --data @mongodb_base.json \

 --attributes '{"type": "mongo"}'

Dynamic Secret

A dynamic secret will be linked to the base secret. One base secret can have many dynamic secrets linked to it.

Create a file named mongodb_dynamic1.json, substituting your values:

Delinea DevOps Secrets Vault Administrator Guide Page 191 of 284

Usage

https://www.postgresql.org/docs/

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "db:mongodb:root"

 },

 "grantPermissions": {

 "what": "readWrite",

 "where": "mydb"

 },

 "pool": "pool1",

 "ttl": 1000,

 "userPrefix": "usr"

}

Create a dynamic secret using the CLI at a path of your choosing:

dsv secret create --path db:mongodb:dynamic1 --attributes @mongodb_dynamic1.json

Note: when creating a dynamic secret the data field should be empty.

Attributes description:

1. linkConfig: denotes that it is a dynamic secret with a link to a base secret:

n linkType: should always be dynamic

n linkedSecret: sets a path to base secret

2. grantPermissions: defines access privileges

n what: a specific MongoDB role name, e.g. read, readWrite

n where: a database name

3. pool: a pool name to use

4. ttl: a number of seconds before the engine automatically deletes new credentials, must be set at or above
900

5. userPrefix: an optional field that defines a prefix for a new username

To create a new user and assign privileges, the db.createUser() method is used.

Sending a MongoDB task to an engine

Read the MongoDB dynamic secret. A randomly chosen engine in the engine pool should receive the task and
perform it. The engine attempts to create a MongoDB account and reports back success or failure. On success, the
user also receives the new working credentials. As long as there is at least one running engine in a given pool, an
engine will receive a MongoDB account revocation task and delete the account once its TTL expires.

List MongoDB Base Secrets

To find all base secrets that are related to MongoDB run:

Delinea DevOps Secrets Vault Administrator Guide Page 192 of 284

Usage

https://www.mongodb.com/docs/manual/reference/method/db.createUser

dsv secret search --query "mongo" --search-field "attributes.type"

List Dynamic Secrets

To find all dynamic secrets that are linked to a specific base secret run:

dsv secret search --query "db:mongodb:root" --search-links

Read Dynamic Secret Attributes

Using the secret read CLI command to read a dynamic secret will initiate a creation of a new credentials. To read
a dynamic secret use the secret describe CLI command instead.

Example:

dsv secret describe db:mongodb:dynamic1

The secret describe does not return the secret data field, but for dynamic secrets it is always empty.

Third Party Reference

For server configuration details, refer to MongoDB Database Documentation.

DSV Engine

Starting an Engine

There are three methods for creating and starting an engine. They are:

n Using the DSV-Engine Program and the wizard. This option simplifies engine creation into workflows.

n Using the DSV-Engine Program and flags. This option allows manual input of flags to register and run an
engine.

n Using the CLI and DSV-Engine Program separately. This option allows creation of an engine and engine pool in
the CLI before running the engine using the dsv-engine program.

NOTES:

1. The first time an engine is created, a matching configuration file called .dsv-engine-config.yml will also be
created in your home directory. The dsv-engine run command will automatically use the values in this file
unless another configuration is specified. You can create multiple configuration files and use them by specifying
the path along with the run command (i.e., dsv-engine run --config dsv-engine-config2.yml).

2. Setting up the Engine with Oracle Databases has separate requirements. See the Oracle page for instructions.

Delinea DevOps Secrets Vault Administrator Guide Page 193 of 284

Usage

https://docs.mongodb.com/

Engine Wizard

Guide CLI

1. Download the dsv-engine program for your operating
system. The example uses dsv-engine as the program name.

https://dsv.secretsvaultcloud.com/downloads

2. Begin the registration wizard and follow the prompts in the
CLI to register the engine.
Note that the user-token is your authorization token found
using the dsv auth command in the DSV CLI.

dsv-engine register --wizard

3. Start the engine using dsv-engine run or the run wizard. dsv-engine runORdsv-engine run --

wizard

Engine Flags

Guide CLI

1. Download the dsv-engine program for your
operating system. The example uses dsv-engine
as the program name.

https://dsv.secretsvaultcloud.com/downloads

2. Use the register command followed by the
required flags to register the Engine.
Flags:
--engine-name: The name of the new engine.
--pool-name: The name of the new pool. If you
omit pool-name, the engine will generate a
random name for the engine pool.
--endpoint: The location of the engine. Use your
tenant name followed by the domain you wish to
use.
--user-token: The authorization token from the
dsv CLI. Use the command dsv auth to retrieve
the token.

dsv-engine register --endpoint
<tenantname>.secretsvaultcloud.com--engine-name
<exampleengine> --user-token <exampletoken>

3. Use the run command to start the engine. dsv-engine run

CLI & Engine Program

To start a DSV Engine, perform the following actions. The example uses the placeholders examplepool and
exampleengine, replace these with the correct engine and pool names for your organization.

Delinea DevOps Secrets Vault Administrator Guide Page 194 of 284

Usage

Guide CLI

1. Create an Engine pool. dsv pool create --name examplepool

2. Create an Engine and assign it to the pool. Notes: The
create command will return a private key and endpoint. Make
sure to save the private key for Engine registration. It
cannot be retrieved later. An Engine can only be assigned to
one pool.

dsv engine create --name exampleengine
--pool-name examplepool

3. Install the dsv-engine program. The example uses dsv-
engine as the program name. If you use the same name,
make sure to include the dash when performing registration in
step 4.

https://dsv.secretsvaultcloud.com/downloads

4. Run the Engine. dsv-engine run --endpoint
<tenantname>.<secretsvaultcloud.com>--
engine-name exampleengine --private-
key exampleprivatekey

5. (Optional) Ping the Engine to ensure connectivity. dsv engine ping --name exampleengine

6. (Optional) For support using the Engine Binary, use the
built-in CLI help commands.

dsv-engine register -h and dsv-engine
run -h

Starting an Engine in a Container

To start an engine in a container, pull the appropriate image and run a container from it. The result will depend on
the environment variables you provide to the new container. If you had created a pool, but not engine, you can
register a new engine and start it in one step:

Note: DSV_TOKEN is used to authenticate into the API. It can be generated in the CLI with dsv auth.

docker run -e DSV_ENGINE=exampleengine -e DSV_POOL=examplepool -e DSV_
ENDPOINT=<tenant.secretsvaultcloud.com> -e DSV_TOKEN=<tokentext> dsv-engine

You should see the private key and other information about the new engine displayed once it has been registered,
and the container has been started. Store the private key and other information securely.

If you already have a registered engine and want to run it in the container, then provide a different set of
environment variables:

docker run --name eng --rm -e DSV_ENGINE=exampleengine -e DSV_
ENDPOINT=<tenantname>.secretsvaultcloud.com -e DSV_PRIVATE_KEY=<privatekey> dsv-engine

On a successful engine start, you should receive a response saying that the engine is ready and waiting for
messages.

Delinea DevOps Secrets Vault Administrator Guide Page 195 of 284

Usage

List of environment variables for engine Docker container

n ENGINE_NAME

n DSV_POOL

n DSV_TOKEN

n DSV_PRIVATE_KEY

n DSV_ENDPOINT

n DSV_VERBOSITY (warn,debug,error,info)

Installing the Engine as a Service/Daemon

Supported Service Frameworks/Process Managers

The DSV Engine can be installed as a service/daemon using:

Windows

n Windows Services Manager

Linux

n SystemD

n SysV

n Upstart

macOS/OSX

n LaunchD

Installation Commands

Commands/Subcommands Usage

dsv-engine service
install

Install the engine as a service with one of the supported service frameworks /
process managers.

dsv-engine service
uninstall

Uninstall the engine service.

dsv-engine service start Start the engine service.

dsv-engine service stop Stop the engine service.

dsv-engine service
restart

Restart the engine service.

dsv-engine service
status

Get the current status of the service.

Delinea DevOps Secrets Vault Administrator Guide Page 196 of 284

Usage

Installation Steps

1. Register the engine using the normal workflow (e.g. dsv-engine register)

2. Using an account with the appropriate permissions, run: dsv-engine service install.

3. Run: dsv-engine service start, or restart the machine.

Encryption as a Service

DSV offers both a fully managed and a user managed Encryption as a Service (EaaS). DSV is able to
encrypt/decrypt strings and files under 2MB via the fully-managed encryption API, the manual encryption API or in
the CLI using the crypto command. The key used for the encryption and decryption is stored as a secret-like object
within DSV's architecture. The operations of encrypting and decrypting data are done on-the-fly. Those results are
returned to the caller immediately and are not saved within DSV.

Management Subcommands

Management subcommands distinguish whether the encryption key is generated automatically or provided
manually.

Subcommand Function

auto DSV automatically generates the encryption key. DSV will default to auto if manual is not
specified.

manual Users manually provide the encryption key. Manual must be specified for each input when
encrypting with user supplied keys.

Operation Subcommands

Operation subcommands act on files and strings.

Subcommand Function Example

decrypt Function Decrypts a file or string. dsv crypto decrypt --path mykeys/key1 -
-data @file.txt.enc

encrypt Encrypts a file or string. dsv crypto encrypt --path mykeys/key1 -
-data @file.txt

rotate Rotates both data and encryption keys to
new versions. For use with auto EaaS
only.

dsv crypto rotate --path mykeys/key1 --
data 'ciphertextstring' --version-start
0

Key Management Subcommands

Key Management subcommands act on encryption keys.

Delinea DevOps Secrets Vault Administrator Guide Page 197 of 284

Usage

https://dsv.secretsvaultcloud.com/api#tag/EaaS-Auto
https://dsv.secretsvaultcloud.com/api/index.html#tag/EaaS-Manual

Subcommands Function Example

key-create Generates a new encryption key. Used
only with managed (auto) encryption. Use
key-upload to supply your own key.

dsv crypto key-create --path
mykeys/key1

key-delete Mark an encryption key for deletion. The
key and all of its versions will be removed
in about 72 hours. A key that is marked for
deletion but not yet removed can be
restored using key-restore.

dsv crypto key-delete --path
mykeys/key1

key-read Displays the readable data of the
encryption key. Reading a manual key will
show the key and metadata. Reading an
auto key will display only metadata.

dsv crypto key-read --path
mykeys/key1

key-restore Restores a key that is marked for deletion.
Fully removed keys cannot be restored.

dsv crypto key-restore --path
mykeys/key1

key-update Creates a new version of a user supplied
encryption key. The --private-key flag is
required. For use with manual encryption
only.

dsv crypto manual key-update --path
mykeys/key1 --private-key
MnI1dTh4L0E/RCHK0...QiY=

key-upload Uploads a new, user supplied, AES256
(symmetric) encryption key to DSV. The --
scheme and --private-key flags are
required. The encryption key must be
AES-256, symmetric, base 64 encoded.

dsv crypto manual key-upload --path
mykeys/key1 --scheme symmetric
--private-key
MnI1dTh4L0E/RchHk0tiUGVTaFZt...QiY= -
-nonce S1Nze...1Bz

Flags

Flags accompany subcommands to set preferences.

Flag Function Example

--data Selects the file or string to be encrypted or decrypted --data 'secret
string'

--nonce Sets the nonce value for manual encryption. If omitted, DSV will
generate a nonce value.

--nonce
S1Nze...1Bz

--out Sets the output name of a decrypted file. --out secret.txt

--path Points to the location of the encryption key. --path
mykeys/key1

Delinea DevOps Secrets Vault Administrator Guide Page 198 of 284

Usage

Flag Function Example

--scheme Sets the scheme for manual keys. --scheme
symmetric

--version Sets the version of the key to use when decrypting data. --version 0

--version-
end

Sets the target key version when reencrypting data. --version-end 4

--version-
start

Sets the current key version to begin rotation. --version-start 0

Encrypting Data

Encrypting data requires three steps:

n Create or Upload an encryption key.

n Encrypt the file or string.

n Decrypt the file or string.

Note: Fully-managed encryption uses the auto subcommand. When using fully-managed encryption, you
do not need to specify auto because it is the default for the crypto command. When providing your own
keys, be sure to use the manual subcommand for each input.

Automatic Key Creation

To create a fully-managed, automatically generated encryption-key:

1. In DSV, create an encryption key using the subcommand and flags: dsv crypto key-create --path

mykeys/key1. Substitute your own path and key name for mykeys and key1.

2. The CLI returns a confirmation of key creation. This metadata can also be read using the dsv crypto key-

read --path mykeys/key1 command:

{

"created": "2021-03-01T19:12:58z", "createdBy": "users:thy-
one:your.username@organization.com", "id": "identificationstring", "lastModified":
"2021-03-01T19:12:58z", "lastModifiedBy": "users:thy-
one:your.username@organization.com", "path": "mykeys:key1", "version": "0"}

Manual Key Creation

To upload your own encryption key:

1. In DSV, upload an encryption key using the subcommand and flags: dsv crypto manual key-upload --path

mykeys/key1 --scheme symmetric --private-key MnI1dTh4L0E/RchHk0tiUGVTaFZt...QiY= --nonce

S1Nze...1Bz. The private-key that you supply must be AES 256, symmetric, 64 bit encoded. The scheme

value must be "symmetric". If the nonce value is omitted, DSV will generate it for you.

Delinea DevOps Secrets Vault Administrator Guide Page 199 of 284

Usage

2. The CLI returns a confirmation of key upload. This data can also be read using the dsv crypto manual key-

read --path mykeys/key1 command:

{

"created": "2021-03-01T19:12:58z", "createdBy": "users:thy-
one:your.username@organization.com", "data": { "metadata": null, "nonce":
"S1Nze...1Bz", "privateKey": "MnI1dTh4L0E/RchHk0tiUGVTaFZt...QiY=", "scheme":
"symmetric"}, "description": "", "id": "identificationstring", "lastModified": "2021-03-
01T19:12:58z", "lastModifiedBy": "users:thy-one:your.username@organization.com", "path":
"mykeys:key1", "version": "0"}

String Encryption

After creating or uploading an encryption key, follow these steps to encrypt a string. If you are using a manually
supplied key, be sure to include the manual subcommand after the crypto command in the examples.

1. Encrypt the string using the dsv crypto encrypt subcommand along with the encryption key --path and the
string --data.

dsv crypto encrypt --path mykeys/key1 --data 'Example String'

2. The CLI returns a confirmation of encryption.

{

"ciphertext": "zIPFkidTB51...cz2CEZ4+n","path": "mykeys/key1","version": "0"}

3. Make sure you save the ciphertext string and version. You will need that information when attempting to decrypt
in the future.

4. Decrypt the string using the dsv crypto decrypt subcommand along with the same encryption key --path
and the ciphertext as the --data value.

dsv crypto decrypt --path mykeys/key1 --data 'zIPFkidTB51...cz2CEZ4+n'

5. The CLI returns the value of the decrypted string.

{

"data": "Example String","path": "mykeys/key1","version": "0"}

File Encryption

After creating or uploading an encryption key, follow these steps to encrypt a file. If you are using a manually
supplied key, be sure to include the manual subcommand after the crypto command in the examples.

Note: The maximum file size is 2MB including overhead associated with DSV encoding and transporting.

Delinea DevOps Secrets Vault Administrator Guide Page 200 of 284

Usage

1. Encrypt the file using the dsv crypto encrypt subcommand along with the encryption key --path and the --
data flag pointing to the file location. (Optional) Give the encrypted file a new name using the --out flag. If no
new filename is specified, DSV will append .enc to the original filename.

dsv crypto encrypt --path mykeys/key1 --data @file.txt

2. DSV saves the encrypted file. The CLI returns a confirmation of encryption.

Ciphertext with metadata successfully saved in file.txt.enc

3. Decrypt the file using the dsv crypto decrypt subcommand along with the same encryption key --path and
the new .enc file as the --data value. (Optional) Give the decrypted file a new name using the --out flag. If no
new filename is specified, DSV will append .txt to the file name.

dsv crypto decrypt --path mykeys/key1 --data @file.txt.enc --out decryptedfile.decrypted

4. DSV decrypts and saves the file. The CLI returns confirmation of decryption.

Decrypted data with metadata successfully saved in decryptedfile.decrypted

The decrypted file will contain the metadata associated with the original encrypted file (i.e., version, path, and data).
The data value remains base64 encoded. If you want to obtain the original file, you will need to base64 decode the
data value.

Linux -- prerequisites: jq, base64, md5sum

> jq -r '.data' decryptedfile.decrypted | base64 -d > decryptedfile.original

> md5sum file.txt decryptedfile.original

adbb83c57dc433b3a1d0e887ea3c029f file.txt

adbb83c57dc433b3a1d0e887ea3c029f decryptedfile.original

Key Rotation and Versioning

For fully-managed (auto) encryption, both keys and data can be rotated.

Note: A new version of a key can only be created by rotating data.

When data is rotated, it is decrypted using the original encryption key, and reencrypted with the new version.

Note: The original version of a key is designated as Version 0.

Delinea DevOps Secrets Vault Administrator Guide Page 201 of 284

Usage

Creating a New Key Version

A new key version is created automatically when encrypted data is rotated using the most recent version of the key.
To rotate an encryption key and data to a new version:

1. Use the rotate subcommand along with the following.

n the --path to the key to be rotated

n the already encrypted data (ciphertext or file) from the previous version as the value for --data

n the current version number of the data as the value for --version-start

n (Optional) For files, the --out flag can be used to specify the name of the reencrypted file.

dsv crypto rotate --path mykeys/key1 --data 'zIPFkidTB51...cz2CEZ4+n' --version-start 0

2. The data is now re-encrypted as version 1, and key version 1 has been created.

Note: If version 0 of the ciphertext/file is saved, it can still be decrypted using version 0 of the key. The
newly returned version 1 ciphertext/file can only be decrypted using version 1 of the key.

3. The CLI returns a confirmation of rotation.

{

"ciphertext": "pcrvO6gXy0a...k9RKKHV9n","path": "mykeys/key1","version": "1"}

4. The string or file can now be decrypted by passing the new --data value along with the --version number. If
no --version is set, DSV will default to the most recent version of the key.

dsv crypto decrypt --path mykeys/key1 --data 'pcrvO6gXy0a...k9RKKHV9n' --version 1

Rotating to an Existing Key Version

To rotate data to an existing version of a key:

1. Use the rotate subcommand along with the following.

n the --path to the key.

n the already encrypted data (ciphertext or file) from the previous version as the value for --data.

n the version number of the key with which the data was previously encrypted as the value for --version-
start.

n the new version of the key to use for encryption as the value for --version-end.

2. This example input will rotate the file from version 3 of the key to version 6.

Delinea DevOps Secrets Vault Administrator Guide Page 202 of 284

Usage

dsv crypto rotate --path mykeys/key1 --data @passwordv3.enc --version-start 3 --version-
end 6 --out @passwordv6.enc

3. The CLI returns a confirmation of data rotation.

{

"file": "@passwordv6.enc","path": "mykeys/key1","version": "6"}

4. The new file can now be decrypted using version 6 of the key.

Manual Key Updating

For user supplied (manual) encryption, key values can be updated. Note that the original version of a key is
designated as version 0.

To update a key:

1. Use the key-update subcommand along with the following.

n the --path to the existing key

n the new key as the value for --private-key

n (optional) a new --nonce string

n Example: dsv crypto manual key-update --path mykeys/key1 --private key

MnI1dTh4L0E/RchHk0tiUGVTaFZt...QiY=

2. The CLI returns a confirmation of the key update. Note that the newly updated key is now designated as version
1.

{

 "attributes": null, "created": "2021-03-01T19:12:58z", "createdBy": "users:thy-
one:your.username@organization.com", "data": { "metadata": null, "nonce":
"S1Nze...1Bz", "privateKey": "MnI1dTh4L0E/RchHk0tiUGVTaFZt...QiY=", "scheme":
"symmetric"}, "description": "", "id": "identificationstring", "lastModified": "2021-03-
01T19:12:58z", "lastModifiedBy": "users:thy-one:your.username@organization.com", "path":
"mykeys:key1", "version": "1"}

3. All encrypted files or strings must be decrypted with the key --version that was used for encryption. DSV
defaults to using the most recent version unless a version is specified.

Certificate Issuance

DevOps Secrets Vault provides the following functionality:

n The ability to generate and sign leaf (end-entity) certificates or to create and sign a certificate from a certificate
signing request (CSR).

n The ability to generate and issue leaf (end-entity) certificates for to issue a certificate from a certificate signing
request (CSR) defined by RFC-7512.

All certificates assume RSA 2048 key-pairs and SHA-256 Hashing.

Delinea DevOps Secrets Vault Administrator Guide Page 203 of 284

Usage

https://datatracker.ietf.org/doc/html/rfc7512

A signing certificate is required and it may be generated in DSV or imported from an outside Certificate Authority
(CA). This documentation will often refer to the signing certificate as the "root" certificate. However, in the case of a
signing certificate being imported from an outside CA, best practices would be to use an intermediate certificate as
the DSV signing certificate.

All the dsv pki <action> commands start a workflow if no flags are added. However, --help (or -h) can be
used for help. In these examples we provide the direct commands.

Generate a Signing Certificate

The command to generate a self-signed root certificate and private key is dsv pki generate-root.

Flag Description

common-
name

Required - The domain name of the root CA.

rootcapath Required - Path and name of a secret that will contain the signing certificate.

domains Required - List of domains that this signing certificate is allowed to sign leaf certificates.

maxttl Required - Maximum time to live in hours for a leaf cert signed with this signing certificate. This
also sets the expiration date (time) of this root certificate.

crl Optional - URL where customer-supported certificate revocation list (CRL) resides.

country Optional.

state Optional.

locality Optional.

email Optional.

organization Optional.

This command generates a root certificate named foobar.org and corresponding private key for signing leaf
certificates with the common name foo.org and/or bar.org. They are saved in the secret path, ca/myroot, that is
referenced when a leaf certificate is generated and/or signed.

dsv pki generate-root --rootcapath ca/myroot --domains foo.org,bar.org --common-name
foobar.org --organization FooBar,Inc --country US --state IA --locality Boone --maxttl
1000

The output from the above command only shows the certificate and is base64 encoded.

To retrive the root certificate and private key, run dsv secret read --path ca/myroot.

Delinea DevOps Secrets Vault Administrator Guide Page 204 of 284

Usage

{

 "attributes": {

 "type": "root-cert"

 },

 "created": "2020-04-09T20:29:41Z",

 "createdBy": "users:thy-one:dsvtest9519@mailinator.com",

 "data": {

 "cert":
"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURnakNDQW1xZ0F3SUJBZ0lFTVp4NWJqQU5CZ2txaGtpRzl3M
EJBUXNGQURCaE1Rc3dDUVlEVlFRR0V3SlYKVXpFTE1Ba0dBMVVFQ0JNQ1NVRXhEakFNQmdOVkJBY1RCVUp2YjI1bE1
STXdFUVlEVlFRS0V3cEdiMjlDWVhJcwpTVzVqTVFrd0J3WURWUVFMRXdBeEZUQVRCZ05WQkFNVERIUm9lV052ZEdsa
kxtTnZiVEFlRncweU1EQTBNRGt5Ck1ESTVOREZhRncweU1EQTFNakV4TWpJNU5ERmFNR0V4Q3pBSkJnTlZCQVlUQWx
WVE1Rc3dDUVlEVlFRSUV3SkoKUVRFT01Bd0dBMVVFQnhNRlFtOXZibVV4RXpBUkJnTlZCQW9UQ2tadmIwSmhjaXhKY
m1NeENUQUhCZ05WQkFzVApBREVWTUJNR0ExVUVBeE1NZEdoNVkyOTBhV011WTI5dE1JSUJJakFOQmdrcWhraUc5dzB
CQVFFRkFBT0NBUThBCk1JSUJDZ0tDQVFFQXRVUjFKaDZ4UkdRYVZ0OWhvaUdvWjdiN3JTVzk3YVFhRnprK2VESUNhZ
ThFSjFpYkdSQlAKVFJJMUZHLzlnMUtNTFhPUjArcDRWSHlvYjhzVVhSb0tYeHZZa2t4eXM4RjBoVVdEblUxZHJFVXh
rZGk0R3BhdQpObEJJaWhmblpRdmtnY0txMzFoYktpSlIwaTU0b0NnNjhyNVY2VUY4bVpNQWloa2cya012emFJMFE0T
GE2d3FaCjlSRlFSUlJLRkIzNEx6SUdnaFpDSldTUkY2UDZnSWJpM2VOck1KRWdsaUdqb1FYWjJlanJ1RURWaHhqQ29
5WjYKdmdUdDIza2dxWnNOQUxxUE9CazJGeGZZQ3FuS2d3TTdRYTNRdmdNeVE0eG5KSTBqTUJaVWpFU0IvSmRiRVo5e
QplckhsZGpSYnFSUjhrR0RsYksweDBkUW1jNHpUQitOc0JRSURBUUFCbzBJd1FEQU9CZ05WSFE4QkFmOEVCQU1DCkF
vUXdIUVlEVlIwbEJCWXdGQVlJS3dZQkJRVUhBd0lHQ0NzR0FRVUZCd01CTUE4R0ExVWRFd0VCL3dRRk1BTUIKQWY4d
0RRWUpLb1pJaHZjTkFRRUxCUUFEZ2dFQkFBcEZNYWhFM1FINHQ3U0gzczNNK1ZUSGJpSWhrUnVxazVVZQozK1M2Ykp
iL3ROckRVTE5lSFkyaDBPRGpmcWI3QWk5RElSMjc3dW8vVkh0QW1zWno1bEJ5TjJLZSs3YUxXY2FTClVoek1FVUt6c
m4vMW90T2Q5S2RuVWJ1cS8xNEVCVmUyb0t4Y1k1cHdJZTZnMkpVMW5oSGM2SENENmJVNVRnVmgKbzNWclJ0NVA5VUs
4aWsraUlDbktObVRJUWhsRDVhZ2VJeVp0UmYyQ01xdzR0TldMRzU4b011UTQrcjVwY2VqegpFSGI1UHpiR29wMGI3N
UdyQVFZbWhFU2d4SnVUZWI3WnZiTUIxbG5QdnFyWWNCN09MR2VyaDY4bHZ4K1NadVk2CmE2Nld0RmNobjFlR3c0WlQ
xdzl4Vk5VOVhqRndvbjRqaG9VdlRxR0k0L2c0NlJVY1NoZz0KLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=",

 "domains": ["foo.org", "bar.org"],

 "maxTTL": 1000,

 "privateKey":
"LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFb3dJQkFBS0NBUUVBdFVSMUpoNnhSR1FhVnQ5aG9pR
29aN2I3clNXOTdhUWFGemsrZURJQ2FlOEVKMWliCkdSQlBUUkkxRkcvOWcxS01MWE9SMCtwNFZIeW9iOHNVWFJvS1h
4dllra3h5czhGMGhVV0RuVTFkckVVeGtkaTQKR3BhdU5sQklpaGZuWlF2a2djS3EzMWhiS2lKUjBpNTRvQ2c2OHI1V
jZVRjhtWk1BaWhrZzJrTXZ6YUkwUTRMYQo2d3FaOVJGUVJSUktGQjM0THpJR2doWkNKV1NSRjZQNmdJYmkzZU5yTUp
FZ2xpR2pvUVhaMmVqcnVFRFZoeGpDCm95WjZ2Z1R0MjNrZ3Fac05BTHFQT0JrMkZ4ZllDcW5LZ3dNN1FhM1F2Z015U
TR4bkpJMGpNQlpVakVTQi9KZGIKRVo5eWVySGxkalJicVJSOGtHRGxiSzB4MGRRbWM0elRCK05zQlFJREFRQUJBb0l
CQUJYYklUenRhblpTazVKeAo4TFc1MVRKY0w5QmF3cUhLclpLclJrcjd6S3ExTlEwQmRBSDdvM1FwZzlqby8rbzdvO
GMvTGhBZEwxRVFqc2FiCjkrS1o1ekk4aTBwb2lWUC9PV3R3VEVSRk5jdzFzNXBnUlNKL2xKWGI3RU1xU3E0MlZ1RUd
kYy9rT1duRkpaUncKSWY4OW1vMzJRU21VeWM5Q21FZ09hNVdsa0RmODZLYjJMS2ZscXE1QWkybCs2VVRQTGovejlpT
GhDcTdqTFRtVwpaSzVhcVdaUnpNQ24rVEhnNEdUY2dBeWl0VzJnbUo2RFBSWldzaHJSUUJ2VVloY1JjSnBKN3FQb3h
EOGpMNXIyCmVXV0UzZGs1bzJSdG5aZFRZU095N0o4ZFM5c2F0Sk1UQmdxN0ZNbkFRR2E0S2piYStkQ3RuVjRPaGhiV
240dGIKR2NtUjJvRUNnWUVBeFdlQnpvR3p2RnJqSGl3ZmYraVlYUnFvcEJrR0VBd0gvUC9SUzFQMGNnbjNuYkFKdzZ
OegpEbW1SSHlDNHhFQXhOZzVqZ25mdkMvYS9UcnZXMy9JY3doZzdMMUtIajh6d2NrOGFvWDdOZFNjWVFCZ2w0bU1CC
nNDaVpicmdwblVBbHUxZFRLZ3BULzVYZzBERXlHUE15VkpIZmF3cGprV0p1QTdSejRtYjczdkVDZ1lFQTZ4SzYKWHZ
UVWFzcFk1OWV5emhFU1RhNEdzVTFMRzMwRTJCb0owS1h6dEQ4TkVtMkZTMlRJQ2Jsbk9Rakxod2RpU3E5MgptNnZXe
jVpVG1teGwvMHI2cEhZL3Q1RmJOOEV5eHVzZGdCbDBNTkR1THM2bTRubU5uWXpVSTlqOUF6ajg1alVPCmdaTTJlS0l
zMDNqMGZudG1vejQzYXRnV0M5R3EvOEl2eG0wVXhsVUNnWUFGeWcxU2d4ZEVWTjRJU243NS8xWkkKbExtUlpuSjVFZ
0ZCK0RhcElPTXdYUDU0RDJ1WjR6ZENtdkg0bWJzUmRsaDdIMXpudktDMEZ4NXhMcTBVa0VNcgpwZzVHU3dOU3drM2k
3Rkw1bllCbENTcDY1cnBsczBXZlp2Rm8vOW1vbFBNR1ZYOUk0bGlvVERyMW9CdTZBNWZjClJ4TG9UcnV3emRRd0k2Q
3FhUjdGNFFLQmdGNm1oOHc4SUZ0dlppVFR3UGNnQUpLdWc1dFlWK21WaVNIS09qRjgKNElldTY0Q0VBS3UreEp6RnZ
qNUV3RTU2TnFXRHlPb2RZcnpyM21MTFNyWmtaazlhSFlXNFRWWkJ3RVEvM3Z6NQpRc04xSExKVUd2WU5vMnZRaklwe
WtFMS80TFNBb0hxajM4YnE1Y213WmlHWFpsaE1jTnZnYmVBTWFDSGErb21XCjJrcVJBb0dCQUkyQW8zdk1Uei84ckc
3SFd6blVML0w1OWZwaUMrVXJvUXUwcUxxR1BDTkQ2d2kyUy9lNkFFS1IKMWhQRWJ1b1NvUG4vaExhaDNHL3VsWk9tM
mU3d1Z6dHpoblRIbUk0WGZrbENaUWV4Q3BQOE9wUDlKUDZHZVVVOQpMbHpaSkFjZHVFck5zb2pXcTluYVhCZkdZUFk
yd0kvOXZyQ29HUGhDMXVWMURnVFlQNk9ZCi0tLS0tRU5EIFJTQSBQUklWQVRFIEtFWS0tLS0tCg=="

Delinea DevOps Secrets Vault Administrator Guide Page 205 of 284

Usage

 },

 "description": "",

 "id": "90de1c6b-3c85-42cf-9d6a-758b48f1daf5",

 "lastModified": "2020-04-09T20:29:41Z",

 "lastModifiedBy": "users:thy-one:dsvtest9519@mailinator.com",

 "path": "ca:myroot",

 "version": "0"

}

Register (Import) a Signing Certificate

The command to register a signing certificate and private key generated outside of DevOps Secrets Vault is dsv
pki register.

Flag Description

certpath Required - Path to a PEM file containing the signing certificate.

privkeypath Required - Path to a PEM file containing the signing certificate private key.

rootcapath Required - Path and name of a secret that will contain the signing certificate.

domains Required - List of domains that this signing certificate is allowed to sign leaf certificates.

maxttl Required - Maximum time to live in hours for a leaf cert signed with this signing certificate. If this
is set further out in time than the expiration date of the certificate that is being registered, then
there will be an error. For example, if this signing certifcate has an expiration date next week, the
maxTTL maximium number is 189 hours.

crl Optional - URL where customer-supported certificate revocation list (CRL) resides.

As an example, create a file with this certificate and name it cert.pem.

-----BEGIN CERTIFICATE-----

MIIDnjCCAoagAwIBAgIJAMOhi74h4lRqMA0GCSqGSIb3DQEBCwUAMGQxCzAJBgNV

BAYTAlVTMQswCQYDVQQIDAJJTDEQMA4GA1UEBwwHQ2hpY2FnbzEhMB8GA1UECgwY

SW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMRMwEQYDVQQDDApmb29iYXIub3JnMB4X

DTIwMDQxMDAxMjMyOFoXDTI1MDQwOTAxMjMyOFowZDELMAkGA1UEBhMCVVMxCzAJ

BgNVBAgMAklMMRAwDgYDVQQHDAdDaGljYWdvMSEwHwYDVQQKDBhJbnRlcm5ldCBX

aWRnaXRzIFB0eSBMdGQxEzARBgNVBAMMCmZvb2Jhci5vcmcwggEiMA0GCSqGSIb3

DQEBAQUAA4IBDwAwggEKAoIBAQCxDninSZ/wDyXCcRCAgHdGxP8/YW4sX1OcStjl

qOjVVCGEr0wrLG0rDFb/KxVJ3WVM4lh381ZUT/N6qcRrl2ZPupPh9P9jjU5NkJIS

x2wIsuptRFzuw4nSBoIdDdMun0CDbscEuWUIjEdsC5kj7DPLaN16u6icOxxAH9RW

YzQoV92hsjmIZvHtzpCoVMsUMF7ONbzh54wZgajzMPV0jaGKrqLMnuhLs5O1O+AY

4k03NlfsTSNsOA8a+jjXXG331jmuQPh4UphcmUfMjpEfWw6x/qwSrxKz07k6dDWK

KcmJzqAj/MXA7coOvwj7L39uv/cMVzk/MTeLYW2Jbz7h07CBAgMBAAGjUzBRMB0G

A1UdDgQWBBTRG8SieQc672Onj/fPAQss3eA1pjAfBgNVHSMEGDAWgBTRG8SieQc6

72Onj/fPAQss3eA1pjAPBgNVHRMBAf8EBTADAQH/MA0GCSqGSIb3DQEBCwUAA4IB

Delinea DevOps Secrets Vault Administrator Guide Page 206 of 284

Usage

AQCuomjUQVYMGcPz1wzc2GJw57dTONnNyLXUdiOpGOrxhep1veFkCQmgrxAMu7Ky

ZNEoINmkHY1fO0p7hAzKIWpFBSpMwDZg/1vamjE0riJ+JxGWo2C34WZqRJHbunK5

cBmZBeER93L76Pc8k6eC/01cus+hiqs2Mg7Ugg0RsV+fEs6BEL0KQQh+VG+rPq6C

WH9GJr9PiLD+gG6rxOZRrXt6gx1XOoK6REj1W5wMaxeS2+SKOHGPhaRE+z1xXC9z

7Y8j7UnAeE9dikJipfgj48zWskUexW6rxYK7hiz5nX3VCP1XpZp5uFhXmegJ1fmD

Qx0dZF6QQRIK4MNGZ2mg1y3F

-----END CERTIFICATE-----

Create a file with this corresponding private key and name it key.pem.

-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAsQ54p0mf8A8lwnEQgIB3RsT/P2FuLF9TnErY5ajo1VQhhK9M

KyxtKwxW/ysVSd1lTOJYd/NWVE/zeqnEa5dmT7qT4fT/Y41OTZCSEsdsCLLqbURc

7sOJ0gaCHQ3TLp9Ag27HBLllCIxHbAuZI+wzy2jderuonDscQB/UVmM0KFfdobI5

iGbx7c6QqFTLFDBezjW84eeMGYGo8zD1dI2hiq6izJ7oS7OTtTvgGOJNNzZX7E0j

bDgPGvo411xt99Y5rkD4eFKYXJlHzI6RH1sOsf6sEq8Ss9O5OnQ1iinJic6gI/zF

wO3KDr8I+y9/br/3DFc5PzE3i2FtiW8+4dOwgQIDAQABAoIBAEBCGUXVcadlR/X2

pN+OQDu9+UkeaibOfgDGJUvMbpwlyXhnSoSMvh4Wf2hiUXqaUE6EA0mdVeKJlbsZ

7ACEVQxwkYU7LokJ2rZJ1snb+Hh7vprjabr52oYP+J7kypUsFPTeenpbcrCUgMNU

vkKMUgvrxh3qB3qT9V/MbXrgzCgriHazR27/pPLJALnOAusu7C0XGSa7eJSY6ysO

neKWkWtJiPWa3wTp9LHxeHrkYbEd4cx2G3no1SM4IUDOUjAkHJ2OyShkyn/vXUn9

Aygnlp0s26MIgXgk46AqoR0WIwRYu68FqdXdC16GRmcByALKA5XJ4Hqz9Q8ufoJf

/R9PwjECgYEA5cvcHTX+OCbzgUrtODz3ymHK2q2fSoMGGPPiBHQiqIhaVtprCpMp

6hIy4Vk/D2rHbWj+idMufnvAPjr+qJPRzId0VmRkDyLHGq2WjBv40wc5u4Pw+sa9

YPhQNDmCu4wABvc4lbKueP7OtAcp04nLSk3B9ZLBnOjQNMmDVim2db0CgYEAxT8M

XawhG9LpL7tFtIQsvIxTvYlFimC5+CmnFLjcKD/1jqz8rVJSLCEtPZnh2tDcifxh

yo8UA+/nWHy0tF6JIIhfh+DqUWwWCPxJc5djwM8Zs3TrnawIBYWcl3wUM7X6FLSX

v5unb61XjPYWMU6z64cVaCH20sCUXing9Sh4qBUCgYAOXZUwGkz/M6grYAS+bElN

VJm62/nGTbSW4MAzaRM1l/iVz2e7rIGFSYf2wH6JtzIqa9LlyNbyP0hAW63J2hvW

fm1ObU44CAOMbmen8KO4hY4dY90vwDbclgllimba1KC3zsKx0Q7JL5y6cmwx9j5I

Md47POZvqbpCYoqcW1U1vQKBgQC6oxnUWNdLOJqlK5KdaKPcFPv30DgY48WUZ/VM

yk6nVz3HLzA34DkYwJvKOh1Xq2HCvyjZPeE2iH5jYDysnvcp7WBXdh7BxIBlKDNo

SMt+2Xf8Mpnvq6Q7dV3iiOmktIBZrzgXefVI2sCJBSGirlHYfw1mZxzh9o9tOjs+

PnlMsQKBgAUCVf5yqUGETwkv17I/2Fn+l7Hw3Yv8Ced1WKB6bwoF5Hdllr01LgpF

q10bc+NezxCPQd+dBNBgFbcWpWvYPDfte2u6G94G8OqiOXczwu7Z3iI6puukV4Uy

8Nz6NxjrgibNpB/nui0i36HKAyDWmo57mc7UofPCEieIK/g3DnwG

-----END RSA PRIVATE KEY-----

This command saves this signing certificate and key at the secret path ca/myroot and enables it to sign leaf certs
for foo.org and/or bar.org domains (common name).

dsv pki register --certpath @cert.pem --privkeypath @key.pem --rootcapath ca/myroot --
domains foo.org,bar.org --maxttl 900

Generate and Sign a Leaf Certificate

The command to generate a leaf certificate and private key is dsv pki leaf.

Delinea DevOps Secrets Vault Administrator Guide Page 207 of 284

Usage

Flag Description

common-
name

Required - The domain name that this certificate will use. This must match a domain in the
signing certificate's list.

rootcapath Required - Path and name of a secret that will contain the signing certificate. It does not matter
if the signing certificate was generated by DSV or imported.

ttl Optional - Time to live in hours. If not specified, then the maxttl of the signing certificate will be
used.

store-path Optional - Path and name of a secret that will contain this leaf certificate and private key. If not
specified, then DSV will not store the leaf certificate and private key and there will be no way to
retrive them after the initial stdout is deleted.

country Optional.

state Optional.

locality Optional.

email Optional.

organization Optional.

For this example, we will request a leaf certificate for bar.org and use the imported signing certificate above stored
at ca/myroot.

dsv pki leaf --rootcapath ca/myroot --common-name bar.org --organization FooBar,Inc --
country US --state CA --locality 'San Francisco' --ttl 24

A signed certificate and private key is returned in base64 encoding.

{

Delinea DevOps Secrets Vault Administrator Guide Page 208 of 284

Usage

 "certificate":
"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURaakNDQWs2Z0F3SUJBZ0lFR1lXNFRUQU5CZ2txaGtpRzl3M
EJBUXNGQURCaE1Rc3dDUVlEVlFRR0V3SlYKVXpFTE1Ba0dBMVVFQ0JNQ1NVRXhEakFNQmdOVkJBY1RCVUp2YjI1bE1
STXdFUVlEVlFRS0V3cEdiMjlDWVhJcwpTVzVqTVFrd0J3WURWUVFMRXdBeEZUQVRCZ05WQkFNVERIUm9lV052ZEdsa
kxtTnZiVEFlRncweU1EQTBNVEF3Ck1qSTVNVGhhRncweU1EQTBNVEV3TWpJNU1UaGFNR0F4Q3pBSkJnTlZCQVlUQWx
WVE1Rc3dDUVlEVlFRSUV3SkQKUVRFV01CUUdBMVVFQnhNTlUyRnVJRVp5WVc1amFYTmpiekVQTUEwR0ExVUVDaE1HU
m05dlFtRnlNUWt3QndZRApWUVFMRXdBeEVEQU9CZ05WQkFNVEIySmhjaTVqYjIwd2dnRWlNQTBHQ1NxR1NJYjNEUUV
CQVFVQUE0SUJEd0F3CmdnRUtBb0lCQVFDdUdNbmlITjM4TjRGTGdBNHlESEZTVWYrekxjREFGUWI1SGZleTNDME5VL
3RZeHNrTnNRczkKQUJkZGJyUTBMbjNVWkRNL2hVcUZIR2prSGRkUVROSTJMY2IzRGk4QWdLVU85OHVhOHVpWSttTDZ
ZK2llTE9XegozejVNNnRFOGdFbHNlQUJ4VkFwT29hTGlEZVl4MUxWOUdSUlVoZm1hZ1RFNVF4V3pmdTVKU0wyYVd2M
3RreUhMCnpFandiaGFDVHV0d0gxM1NrczN5OUNwZ091MW1qV1N3WmU0cjRGY284KzdMMEUvSDZLcG9zQk1mWTV5N24
wbm0KeU5NL2ZKM2d3eCtpSkJKa1o1RnJqRWxnNVIyZUs0aG5QdU1zeGFvY05FSElROGNXa1NTOG0zWnpNRnVjYVdFM
QpKNlNTSDQrd0ZXazBZdzA1cTRTZnQreEhGK1VocFdmZkFnTUJBQUdqSnpBbE1BNEdBMVVkRHdFQi93UUVBd0lICmd
EQVRCZ05WSFNVRUREQUtCZ2dyQmdFRkJRY0RBakFOQmdrcWhraUc5dzBCQVFzRkFBT0NBUUVBbzdtTjExRFAKb3c5Y
3VtWXJlVzdzUEFSSWxUcHBwMStIY1BNa0JhL0JvZUwrOEdtM3JDZWgyQnM4b09YQXhyVmVWSkZ5K0VNQQpIZjhQSjF
HazlMeHNzSDJQazk0OTNGMzJlVGhxUWo0d0RuQzg0TkpJZzlYMlpNSkpDSFBjc0wvVU9kenZraEhLCnkvSHk0bDl5Y
0dQdGtudmtURkVkTVdKZ2hOcFgvSkxrTFlQZWthNzFORjFPOEFaMFZVbXJXMDR0YVlDYzZ5UVAKMVlJbXhSd1FLNVJ
iYWMxSWUxVEI5VWc5Z2dvUnhZOUpFKyt5aFRoMU5SK0tYUTZucWVNbk1SdStxaERONjRxVwpmMzhBU1lOMklqRndnT
VBEK3E5R3JOdWl2REYxc05lcDVDeFEzdi83S2dtNDNHTFFhZ3o2T0piblNLbmYrM2llCit3MTQxUXZJT1pDZDRnPT0
KLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=",

 "privateKey":
"LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFb3dJQkFBS0NBUUVBcmhqSjRoemQvRGVCUzRBT01ne
HhVbEgvc3kzQXdCVUcrUjMzc3R3dERWUDdXTWJKCkRiRUxQUUFYWFc2ME5DNTkxR1F6UDRWS2hSeG81QjNYVUV6U05
pM0c5dzR2QUlDbER2ZkxtdkxvbVBwaSttUG8Kbml6bHM5OCtUT3JSUElCSmJIZ0FjVlFLVHFHaTRnM21NZFMxZlJrV
VZJWDVtb0V4T1VNVnMzN3VTVWk5bWxyOQo3Wk1oeTh4SThHNFdnazdyY0I5ZDBwTE44dlFxWURydFpvMWtzR1h1Syt
CWEtQUHV5OUJQeCtpcWFMQVRIMk9jCnU1OUo1c2pUUDN5ZDRNTWZvaVFTWkdlUmE0eEpZT1Vkbml1SVp6N2pMTVdxS
ERSQnlFUEhGcEVrdkp0MmN6QmIKbkdsaE5TZWtraCtQc0JWcE5HTU5PYXVFbjdmc1J4ZmxJYVZuM3dJREFRQUJBb0l
CQUdMVUdZNXRHcXE1aTRFagpnV3R4MnNhRFcrY0lHdm92TlpVbktOeDAxbkpSY1VaVkdmN1d1TzE0NXNxWU5GM0c0c
EUyREUyTHllREVYdHJZCkFjbEl3ckFVem5TaXJaWFljVnFNMmh6c3RaTloxK1FSNFJRaG9vZTRPL0tIL2gwZEtoRVV
FaFJEUTlLZE9ReWcKSFVPK1h3UlR2MUczK0JoNExFdzRROUp3Uks1K1YwRysyZjlqbjQ0M05BZGRTVWZ1UFRpVXVqe
lRTaWNGSlBKdwp0a1hYeU01VkpzVjN0VEZ2a3ZkVE43WFVhUDNLQ3ZOdU9XWFUrbG1BS21qc2xXSDBIRUJhS0NvWWV
qMyt4ZURtCnFFR1A5bXc2eFZVY0hTalgzT1BHVFJrbnR3bXNkRkQ4Z2ZJYi9RZXpVRGVnV0VvM21xSTJpQ2RLbDUwW
URLUWkKSUxzNHY1RUNnWUVBeFdxOEdPMGRCRzBkbGJtTWpEUTE5NnQ0ckhGUjhObHNzOXZ6Wnd0VzZ4Z0c4d0NFWnF
hTwpVNUlVeXd4YWxBL0xQVmJTdVNHQm54Sy9FQTYrZVJ2cTlxOU5UcEw5UDBDc3dpVldiMHpWdUNDQlZYRitaR3diC
kRKcVB0ZHdlb0dxNVZOaUhFUkVEemRuM0RWMVAxZzFyU09wR3BmT0w5OVpYNU9IcGoraEhob2tDZ1lFQTRjSjgKRWh
zdS9jc1ZSTjc0MGxsdzRQTU5HMFUxZ01YaTlJVkZ5dkdtQUIxQ3FGUmpZeUtFTHZqQ1h6UFN2ZTRGczRvZQpRY1Uza
UVnU1djeEFFSmJ6VTB5Sit6ZHdITkpJOFJMMzhxcTB6dVJUSG1pc2Y4cnhGZUt2QU80NTE1N2R6WmJHClR6MTMwUTR
Nc1RKbUxyR2xST0MrMHV5UkRqQm92RUl2V2kwV1lTY0NnWUE0MWdYWlYwcW5YNUxJN0dhZVp0bXkKdUZkQnJrNWMvU
HZpdkV4VE9seUh5cDhWanV5UGNSeEF5eW5aVzNFb2QzT1g4VXN4cVlmYitGV3hsYzBZcVFUNAppSGZGUzJSRnRhVUh
NQ0MyWW5TVlVpWnFKd2F3ZXI4KzNiREtOdGxLYmU5MWtmRXc1S2tudHJ6OXlBT1lLTHplCmZUUmh5c0JkVmdSd0RPc
GxXQVpmb1FLQmdCRmEwQXJjU0JwK2VCNFpQZXQ5c0syNlFYR3RPbFd4NEthSGNEd1AKbzRFeXZxTU9DYTNmUTJZUS9
YQXdIYTA0RlB3ZVRBRW1WZ1NGOWRNdFhtZG9FMEIrQzhWaUY1NC9sQmZrSzJkZQpOQlFMZlZCREg2K2JQRGxBZWMrS
2dLdlFyS0JYVE50ZWtFMWoxUm55RStUWEJ5dHFVNEVIYW9jNnRYSnpiQXgwCmx0blZBb0dCQUladjU2cGNrbXRoMkJ
qZzdDdnpja2VxbHhBeUxKWU1aaW5sYjhjTDJ5UmV1NEQ5Wm0yNHdFOGkKV1N6OEwwUmFlK01Idk85bXlrckVubHhDc
Hd5aFUvL05tUDlENmZGYlh1MWpCb1h4ZUlJRWt1Wk9LdzI5Rm1MMgpFSitKV2MrRkY0cGdpZHBUMCtQL25oc2ZTVGt
4TmtZaWdCSzJ1dmVBdTJIU0NtRWNlRjBlCi0tLS0tRU5EIFJTQSBQUklWQVRFIEtFWS0tLS0tCg=="

}

Sign a Certificate Given a Certificate Signing Request (CSR)

The command for honoring a certificate signing request is dsv pki sign.

Note: The common name for the certificate in the CSR must match a domain in the signing certificate's list.

Delinea DevOps Secrets Vault Administrator Guide Page 209 of 284

Usage

Flag Description

csrpath Required - Path to a PEM file containing the certificate signing request.

rootpath Required - Path and name of a secret that will contain the signing certificate. It does not
matter if the signing certificate was generated by DSV or imported.

subjectaltnames Optional - List of alternative domains. They must match a domain in the signing
certificate's list.

ttl Optional - Time to live in hours. If not specified, then the maxttl of the signing certificate
will be used.

As an example, create a file with this certificate signing request and name it internalSite.csr. It is requesting the
common name of foo.org so we will sign it with the sample root certificate we generated at the top of this page.

-----BEGIN CERTIFICATE REQUEST-----

MIIClDCCAXwCAQAwTzELMAkGA1UEBhMCVVMxCzAJBgNVBAgMAklMMSEwHwYDVQQK

DBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQxEDAOBgNVBAMMB2Zvby5vcmcwggEi

MA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDcmthlMQcfWwZmKZr1G7aYuTLb

j/hCTIlGEhGDcp0elAEnzWGLdFUsbIMdb7ZlO/SEJLb9cVHGgcf9U67s9+1hqUPY

/xwCbHJ7JYfLHZm3XHT5oA2QUmMNqwZlh/YTwUDUr9NYslTZOUm4y6smzfO5TVOC

Z9SFETi3ZfPsknQQ3EEmPso2yJU0yqxHkgozm2bYOItd1ySEOM4R0JLQEBSgLLo4

QLtxJJZiKKVvuhGZ7SZUcXft4RxBq41uv1YyffWeZYa0b/h7hcb7Gj+pnaI/1PWm

vxdkW6cXnpAmL5k0PXlfQARGkBkUFyF3DQGDfT41UfSHE9qWi0gA6wfhXvCFAgMB

AAGgADANBgkqhkiG9w0BAQsFAAOCAQEAmL2JDxGpKmIU60uMUsQXtylObyyIMW0q

bmmqrfccfxdV/WNLLOrm/8g0Rp/eWwAGkQY8tZJnlN+BPK6yFpx1TYW6z2aPGTUT

TgKnaheDWnpCPLkRJRqEIHYe9B+vFvEJXl1lU7pA4FGIsNV+1R2TTG4nBp8Nx7Ng

LWCFT4m90R39wCxXEJMoUOIii8mfeaFwlZstyb/pAPuQoWYebOMCTHxJsxRsr/w9

PBJsTPM+USH1xTUTtbEgY4SGFG7C+SYluFHj9c5hhH40TPv0NH9cmMHxSsbNKbou

wmq9DFjzRXDVjAMLb2fsbBBpQ7/aT30pJWr9jAX0/FH1Ymg2aIK89w==

-----END CERTIFICATE REQUEST-----

dsv pki sign --rootcapath ca/myroot --csrpath @internalSite.csr --ttl 24

The signed certificate comes back in base64 encoding.

{

Delinea DevOps Secrets Vault Administrator Guide Page 210 of 284

Usage

 "certificate":
"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURZakNDQWtxZ0F3SUJBZ0lFRm1OYmV6QU5CZ2txaGtpRzl3M
EJBUXNGQURCaE1Rc3dDUVlEVlFRR0V3SlYKVXpFTE1Ba0dBMVVFQ0JNQ1NVRXhEakFNQmdOVkJBY1RCVUp2YjI1bE1
STXdFUVlEVlFRS0V3cEdiMjlDWVhJcwpTVzVqTVFrd0J3WURWUVFMRXdBeEZUQVRCZ05WQkFNVERIUm9lV052ZEdsa
kxtTnZiVEFlRncweU1EQTBNVEF3Ck1qRTROVGxhRncweU1EQTBNVEV3TWpFNE5UbGFNRTh4Q3pBSkJnTlZCQVlUQWx
WVE1Rc3dDUVlEVlFRSUV3SkoKVERFaE1COEdBMVVFQ2hNWVNXNTBaWEp1WlhRZ1YybGtaMmwwY3lCUWRIa2dUSFJrT
VJBd0RnWURWUVFERXdkbQpiMjh1YjNKbk1JSUJJakFOQmdrcWhraUc5dzBCQVFFRkFBT0NBUThBTUlJQkNnS0NBUUV
BM0pyWVpURUhIMXNHClppbWE5UnUybUxreTI0LzRRa3lKUmhJUmczS2RIcFFCSjgxaGkzUlZMR3lESFcrMlpUdjBoQ
1MyL1hGUnhvSEgKL1ZPdTdQZnRZYWxEMlA4Y0FteHlleVdIeXgyWnQxeDArYUFOa0ZKakRhc0daWWYyRThGQTFLL1R
XTEpVMlRsSgp1TXVySnMzenVVMVRnbWZVaFJFNHQyWHo3SkowRU54QkpqN0tOc2lWTk1xc1I1SUtNNXRtMkRpTFhkY
2toRGpPCkVkQ1MwQkFVb0N5Nk9FQzdjU1NXWWlpbGI3b1JtZTBtVkhGMzdlRWNRYXVOYnI5V01uMzFubVdHdEcvNGU
0WEcKK3hvL3FaMmlQOVQxcHI4WFpGdW5GNTZRSmkrWk5EMTVYMEFFUnBBWkZCY2hkdzBCZzMwK05WSDBoeFBhbG90S
QpBT3NINFY3d2hRSURBUUFCb3pRd01qQU9CZ05WSFE4QkFmOEVCQU1DQjRBd0V3WURWUjBsQkF3d0NnWUlLd1lCCkJ
RVUhBd0l3Q3dZRFZSMFJCQVF3QW9JQU1BMEdDU3FHU0liM0RRRUJDd1VBQTRJQkFRQkh1b2FwSk05VTVUa0IKcU5Pb
0hVMnJ3UmxjOUpRRmc5OTd3Y0UxU0dKbUNKTUd0ZkJMajZRRk80RnFJZGU5Qk90N2o0bnZwQUduYXNmaQpzbzBWa09
tK1dyZUpuRXJiL0dMK0RpMExKbGxSZHduYWJtY2NXTFVkNm5EWWxGYjZLdEdmU3dYQWJyTTh5VVZjCmdqdU1odUl5d
1ExOHR1UEFTWGFrWjUwU2VyOFd4Q3dUMlgvRDhVaGhXR1Ercno5aFV0ZHpUdU5COUdVb21PaGUKb0lXZGxHVVlpcm9
sQS9GQk9nWjZCT2gxVnQ4S3lFN0VLRjZJdU1wM3kvc2szcGVMUmpUL0dIK0JxRW5PNmhzZwpia3NOcTNGSWROYmNlT
ExlV3dLWW1ZUEdQYWFuSnZ3NnZWN3MzRlQ0TUhUaUFtVTRkbTRkZVAvNzRpZXVvTXlXCnNpZTdESkoxCi0tLS0tRU5
EIENFUlRJRklDQVRFLS0tLS0K"

}

SSH Key Issuance

In addition to allowing users to generate TLS certificates, DSV provides an ability to generate SSH-2 compatible
public keys (currently only RSA supported) and SSH-2 certificates.

n Using SSH-2 public keys allows an administrator to place your public key on the server for which you wish to
access. This is usually placed in the user's home directory ~/.ssh/authorized_keys file.

n Using SSH-2 certificates allows DSV's specific root CA to sign the credentials which can then be used to access
any SSH Server where DSV's root CA is trusted.

When users create a regular leaf or root certificate with dsv pki leaf or dsv pki generate-root, respectively,
DSV automatically creates and saves an SSH-compatible public key. DSV stores it in secret data for the leaf or root
secret.

dsv secret read myleaf

Among other fields, such as those for TLS private key, certificate, there will be a field for the SSH public key:

"sshPublicKey": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC4nmHvYaqodYKU2..."

Adding an SSH public key to a server

In order to authenticate to a remote server using SSH, users need to provide a regular RSA private key, such as a
TLS private key DSV generates. Before doing that, users must ensure the server knows about the public key
associated with the private key.

For example, administrators can edit the .ssh/authorized_keys file and add the public key to the list of authorized
public keys for the user of that server.

Delinea DevOps Secrets Vault Administrator Guide Page 211 of 284

Usage

Downloading keys

Below is an example of how to fetch the keys from DSV for use with SSH.

Fetching the SSH private key:

dsv secret myleaf -f data.privateKey | base64 -d > leaf.priv

Fetching the public key in SSH-2 format:

dsv secret myleaf -f data.sshPublicKey > leaf.pub

The names of the files are arbitrary.

Note: The private key must first be base64-decoded.

Authenticating

Having added the public key to the list of authorized keys, users can authenticate:

ssh -i /path/to/leaf.priv [user@host]

This example uses a leaf key, but the workflow is the same with a root key.

Trusting a group of keys signed by a root key

The previous example works well, but there is a maintenance problem that appears if the number of users who
authenticate to one particular host increases. Administrators would then have to update the list of authorized public
keys for each new key. Instead, administrators could make the server trust all keys that are signed by a root key,
one that is higher in the chain of trust.

Clients can then authenticate using any leaf private key that has been signed by a certain root private key. Setting
this up is a two-step process.

Adding a public root key to the server

1. First, the SSH-compatible root public key must be downloaded and saved. dsv secret myroot -f

data.sshPublicKey > root.pub

2. A file with the key must be uploaded to the server and placed in the /etc/ssh/ directory.

3. On the server, edit /etc/ssh/sshd_config. The following line appended to the file instructs the SSH daemon
service to trust all keys signed by a private key associated with a given public key: TrustedUserCAKeys
/etc/ssh/root.pub e.g., echo "TrustedUserCAKeys /etc/ssh/root.pub" >> /etc/ssh/sshd_config.

4. It is often a good idea to restart the SSH daemon service for changes to be applied immediately.

sudo /etc/init.d/ssh restart

Delinea DevOps Secrets Vault Administrator Guide Page 212 of 284

Usage

Generating an SSH certificate on the client side

To authenticate with a private key, users need to prove that a given leaf key has indeed been signed by a root
private key that is connected with the root public key, which the server trusts. To do this, users need to generate an
SSH certificate using the root private key and leaf private key. There is a special command for this.

dsv pki ssh-cert --rootcapath myroot --leafcapath myleaf --principals root,ubuntu --ttl 1000

All of the following arguments are required:

n rootcapath is the path to the root CA secret

n leafcapath is the path to the leaf CA secret

n principals is a list of one or more principals (user or host names) to be included in a certificate when signing a
key

n ttl is the amount of time (by default, in hours) for which the certificate will be valid

This will return an SSH-2 signed certificate. DSV saves the certificate in the leaf secret data. Users can copy the
certificate and save in a file or download it later.

dsv secret myleaf -f data.sshCertificate > leaf.priv-cert.pub

Now it is possible to try to authenticate. Users use the same ssh command and pass the same private key. The
SSH certificate is also submitted automatically behind the scenes by ssh. The command tries to find the certificate
in the same directory where the leaf private key is. For this reason, the certificate file must be named in a certain
way: [private key]-cert.pub.

If there is a leaf private key file named leaf.priv, then the certificate must be named leaf.priv-cert.pub.

Then authentication works.

ssh -i leaf.priv [user@host]

Another client would just need access to the same root secret. With this root secret and a leaf secret, another user
can generate an SSH certificate and use it along with the private key to authenticate. The administrators would not
have to do any additional setup on the server.

Break Glass

Commands and Flags

Command Usage Flags

breakglass Main command to configure and
apply the Break Glass feature.

apply Subcommand to trigger the break
glass event and recover Super
Admin credentials.

Delinea DevOps Secrets Vault Administrator Guide Page 213 of 284

Usage

Command Usage Flags

--shares Flag used to pass in the distributed secret shares needed
to recover Super Admin credentials. Pass the distributed
shares for this flag.

generate Subcommand to enable the break
glass feature.

--min-number-of-shares Flag used to set the minimum number of distributed
shares needed to recover Super Admin credentials. Pass
in a numerical value for this flag.

--new-admins Flag used to choose who the new administrators will be
after the Break Glass event. Pass in a list of usernames for
this flag.

status Subcommand to return current
status of Break Glass
implementation.

Break Glass Setup

To set up Break Glass, enter the dsv breakglass generate command along with the --new-admins and --min-
number-of-shares flags. The following example will require three shares to trigger a Break Glass event and give
the users username1 and username2 administrative rights following the event.

Note: The number of new-adminsmust be greater than or equal to the number of min-number-of-shares.

Example:

dsv breakglass generate --new-admins 'username1,username2,username3,username4' --min-
number-of-shares 3

The share values are sent to each new admin. The admin can access this value using the command: dsv home __

breakglass_share

Trigger Break Glass

To trigger a break glass event, a user must collect the minimum number of share values from users who are
designated as new admins (new-admins). The new admins can access the value using the command: dsv home _

_breakglass_share. The share values must then be entered using the command:

dsv breakglass apply --shares '{share1},{share2},{share3}'

The new admins now have Super Administrator access.

Delinea DevOps Secrets Vault Administrator Guide Page 214 of 284

Usage

Bring Your Own Key (BYOK) Configuration

Use the following steps to change AWSmaster keys.

1. In your AWS account, add the following permission to KMS key that is intended for use by DSV. This provides
access to DSV to encrypt and decrypt using these keys.

 "Sid": "Allow use of the key",

 "Effect": "Allow", "Principal": { "AWS":
"arn:aws:iam::<delinea dsv aws account>:root" }, "Action":
["kms:Encrypt", "kms:Decrypt", "kms:ReEnc
rypt*", "kms:GenerateDataKey*", "kms:DescribeKey"
], "Resource": "*" }

2. In the API/CLI, update the master key arn in DSV.

n Using the API:

PUT v1/config/keys

{

 "keyprovider" : "AWS", "primaryKey" : "arn:aws:kms:us-east-1:<your aws
account>:key/<keyid>", "secondaryKey": "arn:aws:kms:us-west-1:<your aws
account>:key/<keyid>"}

n Using the CLI:

dsv byok update --primary-key arn:aws:kms:us-east-1:<your aws account>:key/<keyid> --
secondary-key arn:aws:kms:us-west-1:<your aws account>:key/<keyid>

Note: To update these keys, the user needs to have proper authorization to access the
v1/config/keys API.

Verify Key Changes in Your AWS Account: Assuming CloudTrail is Enabled

1. In your AWS account, go to CloudTrail.

2. In CloudTrail, click Event history.

3. In Lookup attributes, choose EventName=Encrypt.

4. You should see DSV making an API call to your KMS keys.

Delinea DevOps Secrets Vault Administrator Guide Page 215 of 284

Usage

After these steps, everything should work as before, but now the encryption in the backend will use the new keys.

SIEM Audits

DSV can send audit records to four different types of listeners: syslog, cef, splunk and json. Each type have a
corresponding format for log records and supports one or more transport protocols.

To configure a new SIEM endpoint, use the command:

dsv siem create

To show all available management commands for SIEM endpoints in DSV, run:

dsv siem --help

Note: For every audit action, DSV will try twice to reach the endpoint. If the endpoint is unresponsive after
ten actions and retries, DSV will deregister the endpoint and mark it as failed. When viewed with dsv
siem read <name>, deregistered endpoints will have the field and value: "failed": true. The endpoint
must be recreated or updated to be used again.

Syslog

n Message format: syslog

n Transport protocols: UDP, TCP, TLS (the minimum TLS 1.2 is used)

Syslog messages must be in RFC 5424-compliant form. DSV will truncate messages over 64KB in length.

Delinea DevOps Secrets Vault Administrator Guide Page 216 of 284

Usage

https://tools.ietf.org/html/rfc5424

Syslog Audit

Timestamp RFC3339 format

Priority 191

Version 1

Hostname DSV URL (e.g., example.secretsvaultcloud.com)

MsgID id

Appname DSV

Message usertoken + audit message

StructuredData all other audit fields

Note: A user-specific token, generated by user, is inserted into each message to identify the user.

Sample syslog output

<191>1 2020-06-02T14:53:48Z example.secretsvaultcloud.com DSV - - [1 action=POST
created=2020-06-02T14:51:36.519620577Z ipaddress=10.10.10.10 path=token
principal=users:username principalItemId=00000000-51ea-4bfa-b272-80b12e43b676
tenant=tenant tenantName=tenantName] abcdef "

To start a SIEM configuration workflow, use the command:

dsv siem create

Option Description

Name required, from 3 to 50 characters long configuration name

Type required, select 'syslog'

Protocol required, select one of 'tcp', 'udp' or 'tls'

Host required, domain name or an IP address

Port required, port number in range [0..65535]

Authentication
method

required, select 'token'

Delinea DevOps Secrets Vault Administrator Guide Page 217 of 284

Usage

Option Description

Authentication required, type a token that will be added to the begining of a syslog message

Logging format required, select 'rfc5424'

Route through DSV
engine

required, specify if SIEM messages should be sent through an engine pool to deliver to a
service behind a firewall

Engine pool string, specify which pool to use if previous question was answered affirmatively

Sample Values

{

 "siemType": "syslog",

 "name": "syslogtest",

 "host": "54.210.93.200",

 "port": 8000,

 "protocol": "tls",

 "authMethod": "token",

 "auth": "abcdef",

 "loggingFormat": "rfc5424"

}

Common Event Format (CEF)

n Message format: CEF

n Transport protocols: UDP, TCP, TLS (the minimum TLS 1.2 is used)

CEF DSV Audit description

Version 0 constant

Device Vendor delinea constant

Device Product dsv constant

Device Version - unused by dsv

Signature ID id audit field

Name action audit field

Delinea DevOps Secrets Vault Administrator Guide Page 218 of 284

Usage

https://www.microfocus.com/documentation/arcsight/arcsight-smartconnectors/pdfdoc/common-event-format-v25/common-event-format-v25.pdf

CEF DSV Audit description

Severity status 200 -> 0
400 -> 1
401 -> 7
403 -> 7
404 -> 0
500 -> 0
anything else -> _

Extension all other audit fields

Sample CEF output

CEF:0|delinea|dsv|-|b40e07d3-6fb9-41e8-9816-356de992b8fa|POST|0|action=POST created:2020-
06-02T17:52:30.841020649Z id=b40e07d3-6fb9-41e8-9816-356de992b8fa ipaddress=10.10.10.10
message=login succeeded path=token principal=users:username principalItemId=f18b5bda-51ea-
4bfa-b272-80b12e43b676 status=200 tenant=tenatID tenantName=tenantName

To start a SIEM configuration workflow, use the command:

dsv siem create

Option Description

Name required, from 3 to 50 characters long configuration name

Type required, select 'cef'

Protocol required, select one of 'tcp', 'udp' or 'tls'

Host required, domain name or an IP address

Port required, port number in range [0..65535]

Authentication
method

required, select 'token'

Authentication required, but not used for 'cef' type

Logging format required, select 'cef'

Route through DSV
engine

required, specify if SIEM messages should be sent through an engine pool to deliver to a
service behind a firewall

Engine pool string, specify which pool to use if previous question was answered affirmatively

Delinea DevOps Secrets Vault Administrator Guide Page 219 of 284

Usage

Sample Values

{

 "siemType": "cef",

 "name": "syslogtest",

 "host": "34.210.93.200",

 "port": 8678,

 "protocol": "udp",

 "authMethod": "token",

 "auth": "abcdef",

 "loggingFormat": "cef"

}

JSON

n Message format: JSON

n Transport protocols: UDP, TCP, HTTP, HTTPS

DSV will send raw JSON audit via configure transport.

Sample JSON output

{"action":"POST","created":"2020-06-02T17:52:30.841020649Z","id":"b40e07d3-6fb9-41e8-9816-
356de992b8fa","ipaddress":"10.10.10.10","message":"login
succeeded","path":"token","principal":"users:user","principalItemId":"f18b5bda-51ea-4bfa-
b272-80b12e43b676","status":"200","tenant":"tenat","tenantName":"tenantName"}

To start a SIEM configuration workflow, use the command:

dsv siem create

Option Description

Name required, from 3 to 50 characters long configuration name

Type required, select 'json'

Protocol required, select one of 'tcp', 'udp', 'http' or 'https'

Host required, domain name or an IP address

Port required, port number in range [0..65535]

Endpoint optional, used only for 'http' or 'https' transport to build an URL as http
[s]://<host>:<port>/<endpoint>

Delinea DevOps Secrets Vault Administrator Guide Page 220 of 284

Usage

https://tools.ietf.org/html/rfc7159

Option Description

Authentication
method

required, select 'token'

Authentication required, not used for 'tcp', 'udp' and added as 'Authorization' header for 'http' and 'https'

Logging format required, select 'json'

Route through DSV
engine

required, specify if SIEM messages should be sent through an engine pool to deliver to a
service behind a firewall

Engine pool string, specify which pool to use if previous question was answered affirmatively

Sample Values

{

 "siemType": "json",

 "name": "syslogtest",

 "host": "34.210.93.200",

 "port": 443,

 "protocol": "https",

 "authMethod": "token",

 "auth": "abcdef",

 "loggingFormat": "json"

}

Splunk

n Message format: JSON in the format {"event":{ <audit fields> }}

n Transport protocols: HTTPS

To start a SIEM configuration workflow, use the command:

dsv siem create

Option Description

Name required, from 3 to 50 characters long configuration name

Type required, select 'splunk'

Protocol required, select 'https'

Host required, domain name or an IP address

Delinea DevOps Secrets Vault Administrator Guide Page 221 of 284

Usage

https://tools.ietf.org/html/rfc7159

Option Description

Port required, port number in range [0..65535]

Endpoint optional, used to build an URL as https://<host>:<port>/<endpoint>

Authentication
method

required, select 'token'

Authentication required, a token added as 'Authorization' header to each request

Logging format required, select 'json'

Route through DSV
engine

required, specify if SIEM messages should be sent through an engine pool to deliver to a
service behind a firewall

Engine pool string, specify which pool to use if previous question was answered affirmatively

Sample Configuration

{

 "siemType": "splunk",

 "name": "SplunkProd",

 "host": "instance.splunkcloud.co",

 "endpoint": "services/collector/event",

 "port": 8088,

 "protocol": "https",

 "authMethod": "token",

 "auth": "Splunk 84ba1399-87f2-000g-9b49-797ae7935244",

 "loggingFormat": "json"

}

Tutorials

The Tutorials section gives you a variety of DSV use cases and edge cases, as well as deep technical concepts.
You can follow each section in any order to complete them successfully.

n Administration and Configuration Video Tutorials

n Policy Tutorial

n Use DSVWith Direnv

n Azure Dynamic Secrets

Administration and Configuration Tutorials

Delinea DevOps Secrets Vault Administrator Guide Page 222 of 284

Tutorials

Note: You have different options for interacting with each tutorial. You can leave the player in Interactive
mode, or switch to a Step List, a Step Show or a video. By default the Try it - Interactive mode will be
chosen when opening a video. You can access the different modes by selecting the button highlighted in
green below:

Policy Tutorial

This tutorial addresses a use case in which the initial DSV admin wishes to:

n Delegate resource permissions to one admin team and three separate DevOps teams.

n Give each team of three users access to separate secret paths.

n Assign one person from each team rights to create roles and policies for their teammates.

Policy Structure

Policies are the single source of all permissions in DSV. A policy contains a list of permissions that are then
delegated to groups, roles, and/or individual users.

The following image demonstrates the three methods that apply policies to users:

Delinea DevOps Secrets Vault Administrator Guide Page 223 of 284

Tutorials

Least Privilege Approach

In this tutorial, we begin as the Initial Super Administrator (typically your "thy-one" account). The Initial Super
Administrator account has full, unrestricted access to all of DSV. It is a best practice to follow the Least-Privilege
Administrative Model and only use the Super Administrator account when absolutely necessary.

To avoid using this account, we will:

1. Use the Super Administrator account to create new Users.

2. Create a group called "adminsgroup".

3. Assign the new users to the "adminsgroup" group.

4. Create a policy giving the group administrative permissions.

5. Log out of the Super Administrator account.

6. Log in as one of the new users to complete the remaining administrative tasks.

Delinea DevOps Secrets Vault Administrator Guide Page 224 of 284

Tutorials

Create Users, Groups and Permissions

First, as the Super Admin, we will create and delegate permissions to the administrators. We will create three
administrators and give them permissions to manage Users, Groups, and Roles in DSV.

Note: The following example uses placeholder usernames and passwords. Substitute these values to
meet your organization's requirements.

1. Create administrators using the command and flags:

INPUT:

Delinea DevOps Secrets Vault Administrator Guide Page 225 of 284

Tutorials

dsv user create --username adminusr1 --password Password1

OUTPUT:

{

"created": "2021-04-30T14:14:10Z",

"createdBy": "users:thy-one:superadmin@organization.com",

"displayName": "",

"externalId": "",

"id": "dc677f9c-*******-238f6d04e137",

"lastModified": "2021-04-30T14:14:10Z",

"lastModifiedBy": "users:thy-one:superadmin@organization.com",

"provider": "",

"userName": "adminusr1",

"version": "0"

}

2. Repeat the command for adminusr2 and adminusr3.

INPUT:

dsv user create --username adminusr2 --password Password2

OUTPUT:

{

"created": "2021-04-30T14:14:10Z",

"createdBy": "users:thy-one:superadmin@organization.com",

"displayName": "",

"externalId": "",

"id": "dc677f9c-*******-238f6d04e137",

"lastModified": "2021-04-30T14:14:10Z",

"lastModifiedBy": "users:thy-one:superadmin@organization.com",

"provider": "",

"userName": "adminusr2",

"version": "0"

}

INPUT:

dsv user create --username adminusr3 --password Password3

OUTPUT:

{

"created": "2021-04-30T14:14:10Z",

Delinea DevOps Secrets Vault Administrator Guide Page 226 of 284

Tutorials

"createdBy": "users:thy-one:superadmin@organization.com",

"displayName": "",

"externalId": "",

"id": "dc677f9c-*******-238f6d04e137",

"lastModified": "2021-04-30T14:14:10Z",

"lastModifiedBy": "users:thy-one:superadmin@organization.com",

"provider": "",

"userName": "adminusr3",

"version": "0"

}

3. Create the admins group and add the new administrators as members.

INPUT:

dsv group create --group-name adminsgroup --members adminusr1,adminusr2,adminusr

OUTPUT:

{

"addedMemberNames": ["adminusr2", "adminusr1", "adminusr3"],

"errors": {}

}

4. Give the adminsgroup permission to create, modify and delete Users, Groups, Roles, Policies, and Secrets on
the path secrets:servers:us-west:<.*>.

Note: Permissions could be assigned directly to the three users. Assigning permissions to the group
allows for any additional admin Users to inherit permissions in a single step.

5. Open the configuration text file using the command: dsv config edit.

6. Copy and paste the adminsgroup permission data outlined in the red box below. Make sure it is placed after the
groups:<adminsgroup>value and includes the preceding comma.

{

"created": "2020-04-06T12:34:57Z",

"createdBy": "system",

"lastModified": "2021-04-13T19:05:33Z",

"lastModifiedBy": "users:thy-one:superadmin@organization.com",

"permissionDocument": [

{

 "actions": ["<.*>"],

 "conditions": {},

 "description": "Default Admin Permissions",

 "effect": "allow",

 "id": "bq5i3******po2j2g",

 "meta": null,

 "resources": ["<.*>"],

Delinea DevOps Secrets Vault Administrator Guide Page 227 of 284

Tutorials

 "subjects": [

 "users:<users:thy-one:superadmin@organization.com>"

]

 },

{

 "actions": ["<.*>"],

 "conditions": {},

 "description": "Default Deny Home Permissions",

 "effect": "deny",

 "id": "bskn71nq4h6s72mn0sc0",

 "meta": null,

 "resources": ["home:<.*>"],

 "subjects": [

 "users:<users:thy-one:superadmin@organization.com>"

]

 }

{
"actions": ["<.*>"],
"conditions": {},
"description": "Admin Permissions US-WEST",
"effect": "allow",
"meta": null,
"resources":
["users:<.*>","groups:<.*>","roles:<.*>","clients:<.*>","config:policies:secrets:serve
rs:us-west:<.*>","config:policies:roles:devopsgrp1<.*>","secrets:servers:us-west:<.*>"

],
"subjects": ["groups:<adminsgroup>"]
}

Initialize the New Admin Account

Once we have created the new admin users, put them into a new admin group, and written a policy giving them
permissions, we can log out of the Super Administrator account and use one of the new administrator accounts to
continue with the setup. Switching to an account with fewer permissions will help us adhere to the Least-Privilege
Administrative Model.

1. Begin initialization with the command: dsv init.

2. Select [o] overwrite the config. This will replace the current default profile, the superadmin, with the
adminusr1 account.

3. Enter your tenant name.

4. Choose your domain.

5. Select a store type.

6. Select a cache strategy for secrets.

7. For the auth type, choose (1) Password (local user).

8. Once initialization is complete, confirm that you are logged in as adminusr1 with the command: dsv whoami.

9. The CLI should return: users:adminusr1

Delinea DevOps Secrets Vault Administrator Guide Page 228 of 284

Tutorials

Delegate Secret Management Rights to DevOps Team1

Now that the administrators have been created and delegated permissions, we can start creating the users for the
DevOps teams.

1. Create the three DevOps users.

INPUT:

dsv user create --username devopsusr1 --password Password1*

OUTPUT:

{

"created": "2021-04-30T15:30:45Z",

"createdBy": "users:adminusr1",

"displayName": "",

"externalId": "",

"id": "44f238b5-b657-*****-4defb1d9b4cd",

"lastModified": "2021-04-30T15:30:45Z",

"lastModifiedBy": "users:adminusr1",

"provider": "",

"userName": "devopsusr1",

"version": "0"

}

INPUT:

dsv user create --username devopsusr2 --password Password1*

OUTPUT:

{

"created": "2021-04-30T15:30:45Z",

"createdBy": "users:adminusr1",

"displayName": "",

"externalId": "",

"id": "44f238b5-b657-*****-4defb1d9b4cd",

"lastModified": "2021-04-30T15:30:45Z",

"lastModifiedBy": "users:adminusr1",

"provider": "",

"userName": "devopsusr2",

"version": "0"

}

INPUT:

dsv user create --username devopsusr3 --password Password1*

Delinea DevOps Secrets Vault Administrator Guide Page 229 of 284

Tutorials

OUTPUT:

{

"created": "2021-04-30T15:30:45Z",

"createdBy": "users:adminusr1",

"displayName": "",

"externalId": "",

"id": "44f238b5-b657-*****-4defb1d9b4cd",

"lastModified": "2021-04-30T15:30:45Z",

"lastModifiedBy": "users:adminusr1",

"provider": "",

"userName": "devopsusr3",

"version": "0"

}

2. Create the DevOps group. In the same input, we will also add the three DevOps users and the admin user to the
group.

INPUT:

dsv group create --group-name devopsgroup1 --members
devopsusr1,devopsusr2,devopsusr3,adminusr1

OUTPUT:

{

"addedMemberNames": ["devopsusr1", "devopsusr3", "devopsusr2","adminusr1"],

"errors": {}

}

3. Give the new group (devopsgroup1) access to the path servers:us-west:devopsgroup1secrets:<*>. This
gives all members of DevOps Team 1 full rights to manage secrets on the path.

INPUT:

dsv policy create --path secrets:servers:us-west:devopsgroup1secrets --subjects
groups:devopsgroup1 --actions create,read,update,delete --resources "secrets:servers:us-
west:devopsgroup1secrets:<.*>" --desc "Devopsgroup1 Secret Management Permissions"

OUTPUT:

{

"created": "2021-04-30T15:36:08Z",

"createdBy": "users:adminusr1",

"id": "e5c9f3de-f74b-4d1f-a984-90e31cb2e131",

"lastModified": "2021-04-30T15:36:08Z",

"lastModifiedBy": "users:adminusr1",

"path": "secrets:servers:us-west:devopsgrp1secrets",

Delinea DevOps Secrets Vault Administrator Guide Page 230 of 284

Tutorials

"permissionDocument": [

{

 "actions": ["create", "read", "update", "delete"],

 "conditions": {},

 "description": "Devopsgrp1 Secret Management Permissions",

 "effect": "allow",

 "id": "c2627q72inos72lhq18g",

 "meta": null,

 "resources": ["secrets:servers:us-west:devopsgrp1secrets:<.*>"],

 "subjects": ["groups:devopsgroup1"]

 }

],

"version": "0"

}

4. Deny devopsusr3 the rights to create, delete, and update secrets on the path servers:us-
west:devopsgroup1secrets:<*>. Open the policy file with the command:

dsv policy edit --path secrets:servers:us-west:devopsgroup1secrets

5. Add the data outlined in the red box below:

{

"created": "2021-04-13T13:34:43Z",

"createdBy": "users:thy-one:superadmin@organization.com",

"id": "2d56bf8a-99a7-4a3e-9a30-db5596208480",

"lastModified": "2021-04-13T13:34:43Z",

"lastModifiedBy": "users:thy-one:superadmin@organization.com",

"path": "secrets:servers:us-west:devopsgrp1secrets",

"permissionDocument": [

{

 "actions": ["create", "read", "update", "delete"],

 "conditions": {},

 "description": "Devopsgrp1 Secret Management Permissions",

 "effect": "allow",

 "id": "c1qprsq5fkhs72p14v7g",

 "meta": null,

 "resources": ["secrets:servers:us-west:devopsgrp1secrets:<.*>"],

 "subjects": ["groups:devopsgroup1"]

 }

{
"actions": ["create", "update", "delete"],
"conditions": {},
"description": "Devopsusr3 Secret Management Permissions",
"effect": "deny",
"meta": null,
"resources": ["secrets:servers:us-west:devopsgrp1secrets:<.*>"],
"subjects": ["users:devopsusr3"]

Delinea DevOps Secrets Vault Administrator Guide Page 231 of 284

Tutorials

}
],

"version": "0"
}

Test the DevOps Team Permissions to Read Secrets

1. Create a secret on the path secrets:servers:us-west:devopsgroup1secrets.

INPUT:

dsv secret create secrets:servers:us-west:devopsgroup1secrets:test --data "
{\"username\":\"secretuser\",\"password\":\"passwordtext123\"}"

OUTPUT:

{

"attributes": {},

"created": "2021-04-30T15:40:14Z",

"createdBy": "users:adminusr1",

"data": {

"password": "passwordtext123",

"username": "secretuser"

},

"description": "",

"id": "76b872be-fb5a-4849-b8c7-f8bea3b01896",

"lastModified": "2021-04-30T15:40:14Z",

"lastModifiedBy": "users:adminusr1",

"path": "servers:us-west:devopsgrp1secrets:test",

"version": "0"

}

2. Create another secret on the path secrets:servers:us-west:devopsgroup1secrets:test.

INPUT:

dsv secret create secrets:servers:us-west:devopsgrp1secrets --data "
{\"username\":\"secretuser\",\"password\":\"passwordtext123\"}"

OUTPUT:

{

"attributes": {},

"created": "2021-04-30T15:40:14Z",

"createdBy": "users:adminusr1",

"data": {

 "password": "passwordtext123",

 "username": "secretuser"

 },

Delinea DevOps Secrets Vault Administrator Guide Page 232 of 284

Tutorials

"description": "",

"id": "76b872be-fb5a-4849-b8c7-f8bea3b01896",

"lastModified": "2021-04-30T15:40:14Z",

"lastModifiedBy": "users:adminusr1",

"path": "servers:us-west:devopsgrp1secrets:test",

"version": "0"

}

3. Initialize with the devopsusr1 account. In order to test the permissions granted to devopsusr1 we need to
initialize the account. This will create a new profile for devopsusr1 in your config file. Be sure to choose auth
type "1" as this is a local user.

4. Enter the command dsv init.

5. Choose [a] add a new profile to the config.

6. Enter the profile name: devopsusr1.

7. Initialize devopsusr2 and devopsusr3 using the same sequence. Once the profiles are created, we will be able
to run single commands as devopsusr1 and devopsusr3 in the next step.

8. Read the secrets with the profile of devopsusr1. This profile should have the permissions to read the secret
under test while not having the permissions to read the secret under devopsgrp1secrets.

INPUT:

dsv secret read secrets:servers:us-west:devopsgrp1secrets:test --profile devopsusr1

OUTPUT:

{

"attributes": {},

"created": "2021-04-30T15:40:14Z",

"createdBy": "users:adminusr1",

"data": {

 "password": "passwordtext123",

 "username": "secretuser"

 },

"description": "",

"id": "76b872be-fb5a-4849-b8c7-f8bea3b01896",

"lastModified": "2021-04-30T15:40:14Z",

"lastModifiedBy": "users:adminusr1",

"path": "us-west:devopsgrp1secrets:test",

"version": "0"

}

INPUT:

dsv secret read secrets:servers:us-west:devopsgrp1secrets --profile devopsusr1

Delinea DevOps Secrets Vault Administrator Guide Page 233 of 284

Tutorials

OUTPUT:

{

"message": "Invalid permissions"

}

9. Attempt to create a secret with the profile of devopsusr3. This profile should not have the rights to create a
secret on that path.

INPUT:

dsv secret create secrets:servers:us-west:devopsgrp1secrets:test2 --data "
{\"username\":\"secretuser2\",\"password\":\"passwordtext123\"}" --profile devopsusr3

OUTPUT:

{

"message": "Invalid permissions"

}

Grant Groups the Ability to Search Entities via List Privileges

In the previous section, we verified that the members of devopsgroup1 can only manage the secrets on the path
servers:us-west:devopsgrp1secrets:<.*> and restricted a single member of that group, devopsusr3, to only
be able to read secrets on that path.

Now let's say the members needed to see the non-sensitive information (for example, description, path, create) of
secrets on a different path. We can do this by creating permissions on the root policy to grant List Privileges for all
secrets in DSV to devopsgroup1. List Privileges can also be granted for users, groups and roles.

In this example, we will only grant the permission for secrets by:

n Editing the config using the command dsv config edit --profile thyone

n Adding the section outlined in red below to the set of permissions that currently exist on the config policy:

{

 "created": "2020-04-06T12:34:57Z",

 "createdBy": "system",

 "lastModified": "2021-04-30T14:34:09Z",

 "lastModifiedBy": "users:thy-one:superadmin@organization.com",

 "permissionDocument": [

{

 "actions": ["<.*>"],

 "conditions": {},

 "description": "Default Admin Permissions",

 "effect": "allow",

 "id": "bq5i3seothfc72po2j2g",

 "meta": null,

 "resources": ["<.*>"],

Delinea DevOps Secrets Vault Administrator Guide Page 234 of 284

Tutorials

 "subjects": [

 "users:<users:thy-one:superadmin@organization.com>"

]

 },

{

 "actions": ["<.*>"],

 "conditions": {},

 "description": "Default Deny Home Permissions",

 "effect": "deny",

 "id": "bskn71nq4h6s72mn0sc0",

 "meta": null,

 "resources": ["home:<.*>"],

 "subjects": [

 "users:<thy-one:superadmin@organization.com>"

]

 },

{

 "actions": ["<.*>"],

 "conditions": {},

 "description": "Admin Permissions US-WEST",

 "effect": "allow",

 "id": "c261aofnu9hs72pma9t0",

 "meta": null,

 "resources": [

 "users:<.*>",

 "groups:<.*>",

 "roles:<.*>",

 "clients:<.*>",

 "config:policies:secrets:servers:us-west:<.*>",

 "config:policies:roles:devopsgrp1<.*>",

 "secrets:servers:us-west:<.*>"

],

 "subjects": ["groups:<adminsgroup>"]

 }

{
"actions": ["<list>"],
"conditions": {},
"description": "Global List Permissions - Secrets",
"effect": "allow",
"meta": null,
"resources": ["secrets"],
"subjects": ["groups:<devopsgroup1>"]

}

],

"tenantName": "dsvtestlab",

"version": "2"

}

Delinea DevOps Secrets Vault Administrator Guide Page 235 of 284

Tutorials

Test the DevOps Team Permissions to Search Resources

Using the profile of devopsusr1, search for the secrets located on the path servers:us-
west:devopsgrp1secrets. While the devopsusr1 profile was not able to read secrets on this path before, the list
permissions allows the user to search for that secret and view its non-sensitive properties.

INPUT:

dsv secret search devopsgroup1secrets --profile devopsusr1

OUTPUT:

{

"cursor": "",

"data": [

{

 "attributes": {},

 "created": "2021-04-30T15:40:14Z",

 "createdBy": "users:adminusr1",

 "description": "",

 "id": "76b872be-fb5a-4849-b8c7-f8bea3b01896",

 "lastModified": "2021-04-30T15:40:14Z",

 "lastModifiedBy": "users:adminusr1",

 "path": "servers:us-west:devopsgrp1secrets:test",

 "version": "0"

 },

{

 "attributes": {},

 "created": "2021-04-30T17:46:23Z",

 "createdBy": "users:adminusr1",

 "description": "",

 "id": "90c728d1-7584-49d4-86a9-89fa4ca8daa0",

 "lastModified": "2021-04-30T17:46:23Z",

 "lastModifiedBy": "users:adminusr1",

 "path": "servers:us-west:devopsgrp1secrets",

 "version": "0"

 }

],

"length": 2,

"limit": 25,

"sort": ""

}

Delegate Rights to Manage Policies to a DevOps Team Member

Give devopsusr1 the rights to create, read, update, and delete polices on the path secrets:servers:us-
west:devopsgroup1secrets_<.*>. The permissions will be applied directly to the user as opposed to a group. We
will also give devopsgroup1 read access to any policies created by devopsusr1. Edit the policy again by adding the
red-boxed json snippet below.

Delinea DevOps Secrets Vault Administrator Guide Page 236 of 284

Tutorials

1. Open the policy using the command:

dsv policy edit --path secrets:servers:us-west:devopsgroup1secrets

2. Add the red-boxed JSON data to the policy:

{

 "created": "2021-04-13T13:34:43Z",

 "createdBy": "users:thy-one:superadmin@organization.com",

 "id": "2d56bf8a-99a7-4a3e-9a30-db5596208480",

 "lastModified": "2021-04-13T13:34:43Z",

 "lastModifiedBy": "users:thy-one:superadmin@organization.com",

 "path": "secrets:servers:us-west:devopsgrp1secrets",

 "permissionDocument": [

{

 "actions": ["create", "read", "update", "delete"],

 "conditions": {},

 "description": "Devopsgrp1 Secret Management Permissions",

 "effect": "allow",

 "id": "c2627q72inos72lhq18g",

 "meta": null,

 "resources": ["secrets:servers:us-west:devopsgrp1secrets:<.*>"],

 "subjects": ["groups:devopsgroup1"]

},

{

 "actions": ["read"],

 "conditions": {},

 "description": "Devopsusr3 Secret Management Permissions",

 "effect": "deny",

 "id": "c2629jn2inos72lhq190",

 "meta": null,

 "resources": ["secrets:servers:us-west:devopsgrp1secrets:<.*>"],

 "subjects": ["users:devopsusr3"]

 },

{
"actions": ["create", "read", "update", "delete"],
"conditions": {},
"description": "Devops Team1 Policy Management Permissions",
"effect": "allow",
"meta": null,
"resources": ["config:policies:secrets:servers:us-

west:devopsgrp1secrets:devopsgrp1policy_<.*>"],
"subjects": ["users:devopsusr1"]

},
{

"actions": ["read"],
"conditions": {},
"description": "Devops Team1 Policy Read Permissions",
"effect": "allow",
"meta": null,
"resources": ["config:policies:secrets:servers:us-

Delinea DevOps Secrets Vault Administrator Guide Page 237 of 284

Tutorials

west:devopsgrp1secrets:devopsgrp1policy_<.*>"],
"subjects": ["groups:devopsgroup1"]

}

],

 "version": "2"

}

Test DevOpsUsr1's Permission to Create Policies

Create a policy using the profile devopsusr1, then read the policy using the profile devopsusr2. The first attempt to
create a policy should fail because devopsusr1 is not permitted to create on the path testfailure. The 2nd
attempt will succeed. This policy grants devopsgroup1 full privileges to manage secrets beyond the path
servers:us-west:devopsgrp1secrets:devopsgrp1policy_1.

INPUT:

dsv policy create --path secrets:servers:us-west:devopsgrp1secrets:testfailure --subjects
groups:devopsgroup1 --actions create,read,update,delete --profile devopsusr1

OUTPUT:

{

 "message": "Invalid permissions"

}

INPUT:

dsv policy create --path secrets:servers:us-west:devopsgrp1secrets:devopsgrp1policy_1 --
subjects groups:devopsgroup1 --actions create,read,update,delete --desc "Devopsgroup1
User-Created Policy1" --profile devopsusr1

OUTPUT:

{

 "created": "2021-04-30T18:06:17Z",

 "createdBy": "users:devopsusr1",

 "id": "bc3c38d6-c7cc-49b4-817a-f98b6c409974",

 "lastModified": "2021-04-30T18:06:17Z",

 "lastModifiedBy": "users:devopsusr1",

 "path": "secrets:servers:us-west:devopsgrp1secrets:devopsgrp1policy_1",

 "permissionDocument": [

{

 "actions": ["create", "read", "update", "delete"],

 "conditions": {},

 "description": "Devopsgroup1 User-Created Policy1",

 "effect": "allow",

Delinea DevOps Secrets Vault Administrator Guide Page 238 of 284

Tutorials

 "id": "c264e69ehf7c72g0ddg0",

 "meta": null,

 "resources": [

 "secrets:servers:us-west:devopsgrp1secrets:devopsgrp1policy_1:<.*>"

],

 "subjects": ["groups:devopsgroup1"]

 }

],

 "version": "0"

}

Delegate Rights to "Create Roles" to a DevOps Team Member

Give devopsusr1 the rights to create, read, and assign roles by the name devopsgrp1-roles<.*>. This user will be
the only member of the group that can create roles. Note that the resource must be named appropriately otherwise
the attempt to create will fail. This step will make it easier to audit the creation of policies and provide user
accountability.

INPUT:

dsv policy create --path roles:devopsgrp1_role --subjects users:devopsusr1 --desc
"Devopsgrp1 Role Assignment Permissions" --resources "roles:devopsgrp1_role<.*>" --actions
create,assign,read

OUTPUT:

{

 "created": "2021-04-30T18:09:42Z",

 "createdBy": "users:adminusr1",

 "id": "9f46574a-41cd-4d1b-a03b-d91740aa0321",

 "lastModified": "2021-04-30T18:09:42Z",

 "lastModifiedBy": "users:adminusr1",

 "path": "roles:devopsgrp1_role",

 "permissionDocument": [

{

 "actions": ["create", "assign", "read"],

 "conditions": {},

 "description": "Devopsgrp1 Role Assignment Permissions",

 "effect": "allow",

 "id": "c264fphehf7c72g0ddgg",

 "meta": null,

 "resources": ["roles:devopsgrp1_role<.*>"],

 "subjects": ["users:devopsusr1"]

 }

],

 "version": "0"

}

We will also give devopsgroup1 read permissions for any role created by devopsusr1:

Delinea DevOps Secrets Vault Administrator Guide Page 239 of 284

Tutorials

1. Open the policy using the command: dsv policy edit --path roles:devopsgrp1_role

2. Edit the policy we have just created by adding the red-boxed json snippet below:

{

 "created": "2021-04-22T15:18:02Z",

 "createdBy": "users:adminusr1",

 "id": "5c8b225f-89d6-4f4e-9c67-03b333a9ff4d",

 "lastModified": "2021-04-22T15:18:02Z",

 "lastModifiedBy": "users:adminusr1",

 "path": "roles:devopsgrp1_role",

 "permissionDocument": [

{

 "actions": ["create", "assign", "read"],

 "conditions": {},

 "description": "Devopsgrp1 Role Assignment Permissions",

 "effect": "allow",

 "id": "c20p7alfo4sc72ggua4g",

 "meta": null,

 "resources": ["roles:devopsgrp1_role<.*>"],

 "subjects": ["users:devopsusr1"]

 }

{
"actions": ["read"],
"conditions": {},
"description": "Devopsgrp1 Role Read Permissions",
"effect": "allow",
"meta": null,
"resources": ["roles:devopsgrp1_role<.*>"],
"subjects": ["groups:devopsgroup1"]

}

],

 "version": "0"

}

3. Test devopsusr1's permission to create roles:

a. Attempt to create a role using a name outside of what devopsusr1 has the permissions to create:

INPUT:

dsv role create --name devopsgrp1-roletestfailure --profile devopsusr1

OUTPUT:

{"message": "Invalid permissions"}

b. Now perform a test within the user's permissions:

Delinea DevOps Secrets Vault Administrator Guide Page 240 of 284

Tutorials

INPUT:

dsv role create --name devopsgrp1_role1 --profile devopsusr1

OUTPUT:

{

"created": "2021-04-30T18:18:03Z",

"createdBy": "users:devopsusr1",

"description": "",

"externalId": "",

"groups": null,

"id": "73b0073c-b695-43fe-885c-932c8b9a5d8f",

"lastModified": "2021-04-30T18:18:03Z",

"lastModifiedBy": "users:devopsusr1",

"name": "devopsgrp1_role1",

"provider": "",

"version": "0"

}

Create DevOpsTeam1's Client Credentials for an Application

Using the role that we just created with the devopsusr1 devopsgrp1-role1, we will create client credentials. The
credentials will be associated with the role and inherit the permissions that the role has been delegated.

1. Add the role to the devopsgrp1policy_1 Policy. We will use the update flag to add the role as an additional
subject of the policy:

INPUT:

dsv policy update --path secrets:servers:us-west:devopsgrp1secrets:devopsgrp1policy_1 --
subjects groups:devopsgroup1,roles:devopsgrp1_role1 --actions create,read,update,delete
--desc "Devopsgrp1 User-Created Polciy1"

OUTPUT:

{

"created": "2021-04-30T18:06:17Z",

"createdBy": "users:devopsusr1",

"id": "bc3c38d6-c7cc-49b4-817a-f98b6c409974",

"lastModified": "2021-04-30T18:20:24Z",

"lastModifiedBy": "users:devopsusr1", "path": "secrets:servers:us-
west:devopsgrp1secrets:devopsgrp1policy_1", "permissionDocument": [

{

 "actions": ["create", "read", "update", "delete"],

 "conditions": {},

 "description": "Devopsgrp1 User-Created Polciy1",

 "effect": "allow",

 "id": "c264kq1ehf7c72g0ddhg",

Delinea DevOps Secrets Vault Administrator Guide Page 241 of 284

Tutorials

 "meta": null,

 "resources": ["secrets:servers:us-west:devopsgrp1secrets:devopsgrp1policy_1:<.*>"

],

 "subjects": ["groups:devopsgroup1", "roles:devopsgrp1_role1"]

 }

],

"version": "1"

}

2. Create the DevOps Team1 client. A Client ID and Client Secret will be provided for the next step:

INPUT:

dsv client create --role devopsgrp1_role

OUTPUT:

{

"clientId": "33c2b014-27af-49fa-b4b3-44e8c1cad2b9",

"clientSecret": "1E_uAzxTWbwMjJcfEIP1294pAhp-pkOX5ECqDNZOk8s",

"created": "2021-04-30T18:21:38Z",

"createdBy": "users:adminusr1",

"id": "f131e1fb-bc04-4015-ac8b-0e7ba5c2e20f",

"role": "devopsgrp1_role1",

"url": false

}

Test the "Read Secret" Permissions of the DevOpsTeam1's Client Credential

1. Initialize with the client using dsv init.

2. Select [a] add a new profile to the config, and name your profile clienttest.

3. Choose (2) Client Credential for the Auth Type.

4. When prompted, provide the Client ID and Client Secret below:

Found an existing cli-config located at 'C:\Users\superadmin\.dsv.yml'
Select an option:

[o] overwrite the config
[a] add a new profile to the config
[n] do nothing (default:n) a

Please enter profile name: clienttest
Please enter tenant name: dsvtestlab
Please choose domain:

(1) secretsvaultcloud.com (default)
(2) secretsvaultcloud.eu
(3) secretsvaultcloud.com.au
(4) secretsvaultcloud.ca

Selection:
Please enter store type:

(1) File store (default)
(2) None (no caching)
(3) Pass (Linux only)

Delinea DevOps Secrets Vault Administrator Guide Page 242 of 284

Tutorials

(4) Windows Credential Manager (Windows only)
Selection: Please enter directory for file store (default:C:\Users\superadmin\.thy):
Please enter cache strategy for secrets:

(1) Never (default)
(2) Server then cache
(3) Cache then server
(4) Cache then server, but allow expired cache if server unreachable

Selection:
Please enter auth type:

(1) Password (local user) (default)
(2) Client Credential
(3) Thycotic One (federated)
(4) AWS IAM (federated)
(5) Azure (federated)
(6) GCP (federated)
(7) OIDC (federated)

Selection: 2
Please enter client id for client auth: 33c2b014-27af-49fa-b4b3-44e8c1cad2b9 Please enter
client secret for client auth: ***

5. Create a secret on the path secrets:servers:us-west:devopsgrp1secrets:devopsgrp1polcicy_1:.

INPUT:

dsv secret create secrets:servers:us-west:devopsgrp1secrets:devopsgrp1policy_1:test --
data "{\"username\":\"secretuser\",\"password\":\"passwordtext123\"

OUTPUT:

{

"attributes": {},

"created": "2021-04-30T18:27:49Z",

"createdBy": "users:adminusr1",

"data": {

 "password": "passwordtext123",

 "username": "secretuser"

 },

"description": "",

"id": "04e203f9-b275-4140-bce5-218b80815c23",

"lastModified": "2021-04-30T18:27:49Z",

"lastModifiedBy": "users:adminusr1",

"path": "servers:us-west:devopsgrp1secrets:devopsgrp1policy_1:test",

"version": "0"

}

6. Read the secret with the profile of the Client Credentials Clienttest:

dsv secret read secrets:servers:us-west:devopsgrp1secrets:devopsgrp1policy_1:test --
profile Clienttest

7. You have successfully delegated permissions to DevOps Team1. Repeat the procedure above for Team 2 and
Team 3.

Delinea DevOps Secrets Vault Administrator Guide Page 243 of 284

Tutorials

Use DSV With Direnv

direnv is a commonly used tool to load environment variables for projects in the Linux/Mac communities.

direnv is an extension for your shell. It augments existing shells with a new feature that can load and unload
environment variables depending on the current directory.

In this workflow, it's common to load environment variables from your $HOME/.envrc (optionally in your .profile).

Challenges

Keeping credentials in plain text in your .envrc might be a quick solution, but it's not a secure approach. Removing
sensitive values from your .envrc or .env file can be a great step towards improving your security. Use dsv to
retrieve secrets on demand or load in your session context.

When saving environment variables, it's common to see secrets set via environment variables in .envrc or other
formats (.env).

export GH_TOKEN="plaintexttoken"

export GITHUB_TOKEN="plaintexttoken"

Instead, leverage dsv to populate your credentials on environment load.

export GH_TOKEN="$(dsv-cli secret read --path "core-services:tokens:github-pat:github-pat"
--filter '.data.github-token' --plain --profile mycustomprofilename)"

export GITHUB_TOKEN=$GH_TOKEN

Quick Start on Creating a Secret Like This

Using the DSV CLI, you can create a secret like this:

rolename="core-services-tokens"

secretpath="core-services:tokens:github-pat"

secretpathclient="clients:${secretpath}"

desc="github token for org, repo, and all blanket usage"

secretkey="github-pat"

secretvalue='{"github-token":">>>> SECRET HERE <<<<"}'

dsv secret create \

 --path "secrets:${secretpath}:${secretkey}" \

 --data "${secretvalue}" \

 --desc "${desc}"

dsv secret read --path "core-services:tokens:github-pat:github-pat" --filter
'.data.github-token' --plain

Delinea DevOps Secrets Vault Administrator Guide Page 244 of 284

Tutorials

Optionally, create a client credential and use this as an alternative profile that has limited access to only a specific
path. This is only needed to set up a different profile based on client credentials instead of your normal DSV login.

dsv role create --name "${rolename}"

clientcred=$(dsv client create --role "${rolename}" --plain | jq -c)

DSV Tweaks

When you configure DSV, you can further enhance this approach by leveraging the caching setup. Use a longer
cache lifecycle to reduce API calls, and improve performance.

Limit Scope Of Secret When Possible

The secret is still in memory when loaded as an environment variable, so while it's more secure than plain text, you
can take it even further by investigating using the DSV SDK directly, as well as minimizing the lifespan of the secret.

For example, instead of loading an environment variable that is in scope for all tools and commands, call it as part of
your script like this:

customcli --param foo \

 --param bar \

 --token $(dsv secret read --path "core-services:tokens:github-pat:github-pat" --filter
'.data.github-token' --plain)

In PowerShell, look at Microsoft's documentation about Secret Management With PowerShell

Azure Dynamic Secrets

Azure dynamic secrets is revocable, time-limited access and on-demand credentials for azure cloud.

Challenge/Scenarios

To consume Azure services (e.g., Azure Cosmos DB), the application must have valid Azure credentials. Azure
uses service principal to authenticate its users. An Azure service principal is a security identity used by user-created
apps, services, and automation tools to access specific Azure resources. It only needs to be able to do specific
things, unlike a general user identity. It improves security if you only grant it the minimum permissions level needed
to perform its management tasks. Any new application that needs to access to these azure resource adds
operational overhead as more service principals are required new service principal to access.

Solution

Use DSV dynamic secrets for Azure. This starts with linking a DSV secret to an Azure Service Principal. Then each
time you request the secret, it creates a short lived secret to access an Azure hosted service. You can set the TTL
for how long those credentials will stay valid.

Delinea DevOps Secrets Vault Administrator Guide Page 245 of 284

Tutorials

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.secretmanagement/?view=ps-modules

Benefits

Each app instance can request unique, short-lived credentials. Unique credentials ensures isolated, auditable
access and enable revocation of a single client. While short-lived reduces the time frame in which they are valid.

Try for yourself Refer to azure dynamic secret.

DSV Integrations

The following integrations are supported for DevOps Secrets Vault.

n Kubernetes

n Terraform

n Jenkins

n GitHub

n GitLab

n Azure DevOps

n Ansible

Delinea DevOps Secrets Vault Administrator Guide Page 246 of 284

DSV Integrations

n Puppet

n Chef

Kubernetes

Go to GitHub

DSV has two Kubernetes plugins to retrieve secrets.

n Kubernetes sidecar

The Kubernetes sidecar uses a sidecar for each pod in a cluster, and they all communicate with a single broker
pod running in the cluster that caches secrets. Refer to Kubernetes Architecture.

n Kubernetes webhook

This plugin uses mutating webhooks, and injects the secrets into the cluster’s secret data store (etcd) so they
can be used globally.

Selecting a Kubernetes plugin

The mutating webhook is the most supported option. It is the most flexible for a large deployment.

If you are already using etcd for secrets, the webhook can be incorporated easily. If however you'd like more
granular access, the sidecar keeps secrets inside each pod.

Kubernetes Sidecar Architecture

The illustration shows an example of a Kubernetes architecture implementation.

In studying the diagram, it would be easy to mistakenly conclude that the Kubernetes Secrets Manager is being
used to store the pods’ secrets, which is not the case. The action of Kubernetes Secrets Manager here is to
distribute TLS certificates to secure the connection between the DSV broker and sidecar agent, in cases where this
is desirable. In most cases this would be unnecessary since the user cluster will typically be secured already.

Delinea DevOps Secrets Vault Administrator Guide Page 247 of 284

DSV Integrations

https://github.com/DelineaXPM/dsv-k8s

If secrets were to be stored in Kubernetes Secrets Manager, they would be universally available in the cluster,
contrary to the goal. Instead, with the DSV broker and the volume mount sharing depicted in the diagram, each pod
sees only its own secrets, and secrets remain available as long as the pods are healthy.

The sidecar Kubernetes integration to DevOps Secrets Vault consists of several images available from Docker.
These illustrate how to build containers incorporating DevOps Secrets Vault functionality. To obtain these images,
at your Docker command line, use docker pull commands for each image:

docker pull thycotic/dsv-k8s-controller:latest

docker pull thycotic/dsv-k8s-client:latest

Kubernetes helps coordinate containerized applications across a cluster of machines. DevOps Secrets Vault (DSV)
integrates with any existing Kubernetes application deployment. This article, with reference to the example YAML
code, explains how you would use the provided client and broker YAML to implement the DSV application with your
cluster.

Description of Operations

The example application uses a broker and client container deployment with volume mount sharing for pods to
access the retrieved secrets. This page includes an example of a broker.yml suitable for creation.

Considerations for Sidecars

If the sidecar and broker/controller pods are in the same namespace, no additional actions need to be taken.

If the sidecar and broker/controller pods are in different namespaces, the sidecar needs to know the broker's
namespace using the following environment variable in the sidecar configuration.

Broker is in a Different Namespace

Required if broker is in a different namespace

 - name: BROKER_NAMESPACE

 value: brokernamespace

Specific Namespace Watched by Broker

By default, the broker/controller watches all pods in the cluster; however, the broker can be configured to only watch
pods from a specific namespace using the following environment variable in the broker config.

Optional: Pods Only in this Namespace will be Watched by Broker

 - name: SIDECAR_NAMESPACE

 value: example

Delinea DevOps Secrets Vault Administrator Guide Page 248 of 284

DSV Integrations

Introduction to the Client

The client container fetches and periodically updates a configuration file stored at a shared volume. This is defined
as a shared volume by the pods within the container (see example.yml).

Be sure in your application container to add a volume mount to the shared information, as follows.

volumeMounts:

- name: client-volume

 mountPath: /var/secret/

For the container running the DSV client, you should define the following as environment variables:

env:

- name: REFRESH_TIME

 value: 5s

- name: THY_SECRETS

 value: resources/us-east-1/server1

- name: POD_IP

 valueFrom:

 fieldRef:

 fieldPath: status.podIP

- name: POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

THY_SECRETS defines the path(s) of the secrets the container uses. This is a list separated by spaces.

Example YAML

apiVersion: v1

kind: Secret

metadata:

 name: thycotic-keys

 namespace: default

type: Opaque

apiVersion: v1

kind: Deployment

metadata:

 name: secret-example

spec:

 replicas: 1

 selector:

 matchLabels:

 app: secret-example

Delinea DevOps Secrets Vault Administrator Guide Page 249 of 284

DSV Integrations

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 maxSurge: 1

 template:

 metadata:

 labels:

 app: secret-example

 annotations:

 dsv: testtenant

 spec:

 containers:

 - name: bambe-example

 image: <your app image>

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - name: client-volume

 mountPath: /var/secret/

 - name: bambe-client

 image: thycotic/dsv-k8s-client:<tagname>

 imagePullPolicy: IfNotPresent

 env:

 - name: REFRESH_TIME

 value: 5s

 - name: THY_SECRETS

 value: resources/us-east-1/server1

 - name: LOG_LEVEL

 value: error

 - name: POD_IP

 valueFrom:

 fieldRef:

 fieldPath: status.podIP

 - name: POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 - name: POD_SERVICEACCOUNT

 valueFrom:

 fieldRef:

 fieldPath: spec.serviceAccountName

 volumeMounts:

 - name: client-volume

 mountPath: /var/secret/

 readOnly: false

 - name: secretkey

 mountPath: /tmp/keys

 readOnly: true

 volumes:

Delinea DevOps Secrets Vault Administrator Guide Page 250 of 284

DSV Integrations

 - name: client-volume

 emptyDir: {}

 - name: secretkey

 secret:

 secretName: thycotic-keys

Introduction to the Broker

The Role definition at the beginning of the broker.yml file enables the broker pod to execute. The Service
descriptions in the broker.yml example below are also required as the DSV client uses the name to make internal
calls.

In using the broker.yml file, be sure to first swap in variable values appropriate to your organization, specifically:

spec:

 template:

 spec:

 containers:

 env:

 - name: TENANT

 value: your_tenant_name

 - name: CLIENT_ID

 value: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

 - name: CLIENT_SECRET

 value: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx-xxxxxxxxx

When the broker is running, it watches for new pods coming online that execute with a specific Annotation, dsv. For
each such pod, it looks at the value of the tenant to be used, and adds the pod to its internal registry.

Kubernetes Plugin Configuration

The Kubernetes plugin provides a means of managing workloads and services for the containers configured for the
DevOps Secrets Vault. The following steps are required to configure a Kubernetes plugin.

1. Provide a certificate, an authentication provider, and a corresponding role. Refer to Authentication by
Certificate. Save that data. DSV doesn't keep any of these keys. The certificate and key are passed to the
broker via the Kubernetes tls secret.

2. Create the Kubernetes tls secret.

apiVersion: v1

kind: Secretmetadata: name: dsv-auth-tls-secrets namespace: sandbox05-pportaltype:
kubernetes.io/tlsdata: tls.crt: <your client/leaf cert> tls.key: <your client/leaf
private key>

3. Add the volume in broker/controller yaml and mount at /etc/dsv/certs. We chose mounting secrets for automatic
updates (https://kubernetes.io/docs/concepts/configuration/secret/#mounted-secrets-are-updated-

Delinea DevOps Secrets Vault Administrator Guide Page 251 of 284

DSV Integrations

automatically).

 volumes:

 - name: dsv-tls-secrets secret: secretName: dsv-auth-tls-
secrets

 volumeMounts:

 - name: dsv-tls-secrets readOnly: true mountPath: /etc/dsv/certs

4. Add the new ENV variable to the broker. This tells the broker what type of authentication it uses. name: AUTH_
TYPE value: certificate

The Broker YAML File

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 namespace: default

 name: dsv-service-pod-reader-binding

rules:

- apiGroups: [""] # "" indicates the core API group

 resources: ["pods"]

 verbs: ["get", "watch", "list"]

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: dsv-service-pod-reader-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: dsv-service-pod-reader-binding

subjects:

 - kind: ServiceAccount

 name: default

 namespace: default

apiVersion: v1

kind: Secret

metadata:

 name: thycotic-keys

 namespace: default

type: Opaque

apiVersion: v1

kind: Deployment

metadata:

 name: dsv-broker

spec:

Delinea DevOps Secrets Vault Administrator Guide Page 252 of 284

DSV Integrations

 replicas: 1

 selector:

 matchLabels:

 app: dsv-broker

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 maxSurge: 1

 template:

 metadata:

 labels:

 app: dsv-broker

 spec:

 containers:

 - name: dsv-broker

 image: thycotic/dsv-k8s-controller:<tagname>

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - name: secretkey

 mountPath: /tmp/keys

 readOnly: true

 env:

 - name: REFRESH_TIME

 value: 5m

 - name: THY_API_URL

 value: https://%s.devbambe.com/v1

 - name: TENANT

 value: testtenant

 - name: CLIENT_ID

 value: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

 - name: CLIENT_SECRET

 value: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx-xxxxxxxxx

 - name: LOG_LEVEL

 value: debug

 volumes:

 - name: secretkey

 secret:

 secretName: thycotic-keys

kind: Service

apiVersion: v1

metadata:

 name: dsv-broker

spec:

 selector:

 app: dsv-broker

 ports:

 - protocol: TCP

 port: 80

 targetPort: 3000

Delinea DevOps Secrets Vault Administrator Guide Page 253 of 284

DSV Integrations

kind: Service

apiVersion: v1

metadata:

 name: dsv-auth

spec:

 selector:

 app: dsv-broker

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 8080

 - name: https

 protocol: TCP

 port: 443

 targetPort: 443

This file can also be used locally, for example:

kubectl create -f broker.yml

Kubernetes Mutating Webhook

The Kubernetes Mutating Webhook has two parts, the Injector and the Syncer.

The Injector uses a YAML definition that maps secrets in a DSV tenant to variables in the Kubernetes secrets area.
It runs when the cluster starts, sets these variables, and populates them with the secrets data from DSV.

Then the Syncer runs as a cron task, generally every minute, that updates the Kubernetes environment with
updates that happen in DSV.

Architecture

The illustration shows an example of a Kubernetes Mutating Webhook architecture implementation.

Delinea DevOps Secrets Vault Administrator Guide Page 254 of 284

DSV Integrations

Implementing the Kubernetes Mutating Webhook

Tools for implementing the Kubernetes Mutating Webhook are found on the GitHub page for the Kubernetes
Secrets Injector and Syncer.

Terraform

Go to GitHub

The DevOps Secrets Vault (DSV) Terraform Provider makes Secrets data available and provisions client secrets for
existing roles.

Jenkins

The DSV Jenkins Plugin supports Scripted and Declarative Pipeline syntax.

n Jenkins DSV Plugin: The DevOps Secrets Vault (DSV) Jenkins Plugin allows you to access and reference your
Secrets data available for use in Jenkins builds.

Go to GitHub

n Jenkins Declarative Pipeline Syntax: Jenkins Declarative Pipeline.

Usage

The current plugin can be installed from the list of plugins in Plugin Manager. While it is installed and Jenkins is
restarted, the plugin can be used in Freestyle Projects or Multi-Configuration Projects and configured in the UI.

After installing the Thycotic DevOps Secrets Vault plugin (Manage Jenkins Credentials tab), create the DSV client
credentials.

Delinea DevOps Secrets Vault Administrator Guide Page 255 of 284

DSV Integrations

https://github.com/DelineaXPM/dsv-k8s
https://github.com/DelineaXPM/dsv-k8s
https://github.com/DelineaXPM/terraform-provider-dsv
https://github.com/jenkinsci/thycotic-devops-secrets-vault-plugin

The default DSV configuration can be updated from the Manage Jenkins Configure Secrets tab.

Here, my_secret and its data fields secret1 and secret2 will be set as env variables DSV_SECRET1 and DSV_
SECRET2.

Note: By default, DSV_ is applied as a prefix for every env variable name and can be configured in Jenkins
configurations.

Delinea DevOps Secrets Vault Administrator Guide Page 256 of 284

DSV Integrations

We can use this simple build script to check "is secret read."

Note: For versions 1.1.1 and higher, output values are hidden from the console.

Jenkins Declarative Pipeline

The DevOps Secrets Vault (DSV) Jenkins Plugin allows secrets to be used in a Jenkins build using Declarative
Support.

Pipeline Script

In version 1.1.1, dsvSecret can be used in a Pipeline script.

Example

pipeline {

 agent any

 stages {

 stage("Read DSV secrets") {

 steps {

 script {

 // define a configuration that can be used for getting many secrets

Delinea DevOps Secrets Vault Administrator Guide Page 257 of 284

DSV Integrations

 def configuration = [tenant: 'mariia', credentialsId: 'my_dsv_
credentials']

 def DSV_SECRET_VALUE = dsvSecret(config: configuration, secretPath:
'hello-world:secret', secretDataKey: 'mykey'){}

 sh 'echo "$DSV_SECRET_VALUE"'

 if (DSV_SECRET_VALUE == 'this is a secret') {

 echo 'Ok'

 } else {

 echo 'Not ok'

 }

 def SECRET1 = dsvSecret(config: configuration, secretPath: 'hello-
world:jenkins', secretDataKey: 'secret1'){}

 sh 'echo "$SECRET1"'

 if (SECRET1 == 'value1') {

 echo 'Ok'

 } else {

 echo 'Not ok'

 }

 def SECRET2 = dsvSecret(config: configuration, secretPath: 'hello-
world:jenkins', secretDataKey: 'secret2'){}

 sh 'echo "$SECRET2"'

 if (SECRET2 == 'value2') {

 echo 'Ok'

 } else {

 echo 'Not ok'

 }

 }

 }

 }

 }

}

Checking for hidden values can be seen in the console output.

Delinea DevOps Secrets Vault Administrator Guide Page 258 of 284

DSV Integrations

GitHub

Go to GitHub

Use Delinea DevOps Secrets Vault for retrieval of your secrets.

Instead of storing all your secrets directly in your GitHub repo configuration, store client credentials to connect and
retrieve the desired secret or multiple secrets from your secure vault.

GitLab

Go to GitHub

Delinea DevOps Secrets Vault (DSV) CI plugin allows you to access and reference your Secrets data available for
use in GitLab jobs.

Delinea DevOps Secrets Vault Administrator Guide Page 259 of 284

DSV Integrations

https://github.com/DelineaXPM/dsv-github-action
https://github.com/DelineaXPM/dsv-gitlab

Azure DevOps

Go to GitHub

The Azure DevOps pipeline task is used to read secrets from the Delinea DevOps Secrets Vault.

DSV lookup plugin for Ansible

DSV has lookup plugin for Ansible in the delinea.core collection. The collection is certified and available in
Ansible Galaxy.

To install delinea.core collection run:

ansible-galaxy collection install delinea.core

Use ansible-galaxy collection list to verify the installation. Example:

$ ansible-galaxy collection list delinea.core

/root/.ansible/collections/ansible_collections

Collection Version

------------ -------

delinea.core 1.0.0

$

Source code of the delinea.core collection is available on GitHub: DelineaXPM/ansible-core-collection.

Requirements

The DSV lookup plugin depends on version 0.0.1 of Python DSV SDK. To install it run:

pip install python-dsv-sdk==0.0.1

Authentication

Only available option for authentication is via client credentials, i.e. client id and client secret. Read more about
client credentials here.

Usage

The DSV lookup plugin can be used to access data from DSV and then store it in variables within your playbook.

Use "ansible-doc" to display all available configuration options:

ansible-doc --type lookup delinea.core.dsv

Delinea DevOps Secrets Vault Administrator Guide Page 260 of 284

DSV Integrations

https://github.com/thycotic/DSV-ADO-BuildTask
https://www.ansible.com/
https://galaxy.ansible.com/delinea/core
https://github.com/DelineaXPM/ansible-core-collection
https://github.com/DelineaXPM/python-dsv-sdk

Recommended way to use the plugin is to configure it with environment variables and then set only path to a secret
in the playbook file:

vars:

 my_secret: "{{ lookup('delinea.core.dsv', '<path to secret>') }}"

Also you can set only client id and client secert as env vars and provide tenant name as a named argument:

vars:

 my_secret: "{{ lookup('delinea.core.dsv', '<path to secret>', tenant='<tenant name>')
}}"

Another option available from Ansible 1.5 is the Ansible Vault. Using it you can store client credentials for DSV in
encrypted files.

Permissions

Note: We strongly recommend using policies to control access to secrets needed by the plugin. The role
tied to the client should only have read access to applicable secrets.

For example if name of the role used to generate client credentials is "ansible-role" and in your playbook you have:

vars:

 dsv_secret_one: "{{ lookup('delinea.core.dsv', 'playbooks:example:one') }}"

 dsv_secret_two: "{{ lookup('delinea.core.dsv', 'playbooks:example:two') }}"

Then for this role create a policy with only read action allowed:

dsv policy create \

 --path 'secrets:playbooks:example' \

 --subjects 'roles:ansible-role' \

 --actions 'read' \

 --resources 'secrets:playbooks:example:one,secrets:playbooks:example:two'

Example

The example shows how you can use DSV lookup plugin to read secret from DSV and store in a playbook variable.

To prepare DSV for this example, you need to:

Delinea DevOps Secrets Vault Administrator Guide Page 261 of 284

DSV Integrations

https://docs.ansible.com/ansible/latest/cli/ansible-vault.html

n create a secret

dsv secret create --path 'mysecret' --data '{"key": "1"}'

n create a role

dsv role create --name 'ansible-example'

n generate client credentials

dsv client create --role 'ansible-example'

n create a policy with permission that will allow role "ansible-example" to read "mysecret" secret

dsv policy create \

 --path 'secrets:mysecret' \ --resources 'secrets:mysecret' \ --subjects
'roles:ansible-example' \ --actions 'read'

This example requires Python and Ansible to be installed. To install Ansible follow official installation guide from
Ansible docs.

Python 3.10 and the ansible-core version 2.13.5 are used.

$ ansible --version

ansible [core 2.13.5]

 < skipped for brevity >

 python version = 3.10.8 (main, Oct 13 2022, 22:36:54) [GCC 10.2.1 20210110]

 jinja version = 3.1.2

 libyaml = True

Install the delinea.core collection which includes DSV lookup plugin:

ansible-galaxy collection install delinea.core

Next, install Python DSV SDK:

pip install python-dsv-sdk==0.0.1

For security reasons we do not recommend passing client id and client secret directly as named arguments directly
to lookup plugin from Ansible playbook. In this example set "DSV_CLIENT_ID" and "DSV_CLIENT_SECRET" env
variables to your values of client id and client secret respectively.

Delinea DevOps Secrets Vault Administrator Guide Page 262 of 284

DSV Integrations

https://www.python.org/
https://www.ansible.com/
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Also set "DSV_TENANT" to your tenant name (e.g. "demo" for "https://demo.secretsvaultcloud.com")

Now create a simple playbook which reads secret "mysecret" from DSV, stores it in the "my_secret" variable and
then prints "key" value from the secret's data.

cat <<EOF > dsv_playbook.yml

- hosts: localhost

 vars:

 my_secret: "{{ lookup('delinea.core.dsv', 'mysecret') }}"

 tasks:

 - debug: msg="Key retrieved from DSV = {{ my_secret["data"]["key"] }}"

EOF

Example of running the dsv_playbook.yml using ansible-playbook:

$ ansible-playbook dsvlookup.yml

< skipped for brevity >

TASK [debug]
**

ok: [localhost] => {

 "msg": "Key retrieved from DSV = 1"

}

PLAY RECAP
**

localhost :
ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

$

Please note that DSV lookup plugin is similar to reading a secret using DSV CLI. If you create a playbook like this:

cat <<EOF > dsv_playbook2.yml

- hosts: localhost

 tasks:

 - debug: msg="{{ lookup('delinea.core.dsv', 'mysecret') }}"

EOF

and run it, then the output will be similar to reading the secrets using CLI:

dsv secret read --path mysecret

Delinea DevOps Secrets Vault Administrator Guide Page 263 of 284

DSV Integrations

Puppet

Go to GitHub

The Puppet module facilitates the consumption of secrets from DevOps Secrets Vault (DSV).

Note: Although Puppet is no longer actively supported, implementation details can be addressed by the
Integrations Support team at integrations@delinea.com.

Chef

Go to GitHub

The DSV Chef Cookbook provides a new resource, dsv_secret, as well as a sample cookbook. This resource
allows integration into DSV.

Note: Although Chef is no longer actively supported, implementation details can be addressed by the
Integrations Support team at integrations@delinea.com.

Release Notes

DevOps Secrets Vault is regularly updated to provide improvements and introduce features.

As a Cloud application, DSV lacks version numbers; the current version serves all users because it is always the
only version available.

The Command Line Interface (CLI) is locally installed using OS-specific executables. These bear version numbers
to reflect updates.

n The version number will always be the same across the OS-specific editions of the CLI executable.

n You obtain these updated versions of the CLI executables by downloading them from DevOps Secrets Vault
Downloads.

n The CLI itself will notify you when a new version is available for download.

n Generally, older versions of CLI executables will continue to work, but you will want to have the latest
executables to benefit from fixes and obtain new features.

DSV Cloud Service: Change Log

Update Notes

August 2023 CLI Release Notes

new feature: Added a Policy Editor to the UI. This separates the permission
documents from the policy, allowing for more granular administration.

fixed: Fixed an error when retrieving some dynamic secrets using an engine.

Delinea DevOps Secrets Vault Administrator Guide Page 264 of 284

Release Notes

https://github.com/thycotic/dsv-puppet
https://github.com/thycotic/dsv-chef
https://dsv.secretsvaultcloud.com/downloads
https://dsv.secretsvaultcloud.com/downloads

Update Notes

June 2023 CLI Release Notes

fixed: Reset the number of failed attempts for SIEM configuration if audit exporting
was successful.

fixed: Improved performance for tenants with no SIEM configurations by saving an
empty result for tenant in local cache.

fixed: Added a task to cleanup old engine messages.

fixed: Set CORS headers even when returning 500 HTTP code.

fixed: Generated audit logs on writing response header, instead of on writing
response body. This enables audit logs for endpoints that do return an EMPTY
response body.

fixed: Added missing path/query parameters for a service principal search and
deleted the API for the swagger specification.

May 2023 CLI Release Notes

new feature: The dsv-k8s-sidecar repo is now open source and simpler to use.
https://github.com/DelineaXPM/dsv-k8s-sidecar.

fixed: The bulk add of members to a group and a member to many groups is
working in the UI.

fixed: Resolved an issue migrating a CEF extension format from JSON to key-
value pairs for new CEF SIEM endpoints. Old CEF endpoints will continue using
JSON format.

April 2023 CLI Release Notes

new feature: Added support for Tilt to the dsv-k8s repo. With a single command,
you can stand up an interactive session and see how to use DSV in k8s.

fixed: Fixed a validation error on UI Break Glass page.

fixed: The UI secret preview now indicates the correct user permissions.

fixed: Fixed an issue that prevented policies to give access to a subset of groups,
specifically “groups:<prefix.*>”.

March 2023 CLI Release Notes

Delinea DevOps Secrets Vault Administrator Guide Page 265 of 284

Release Notes

https://github.com/DelineaXPM/dsv-cli/releases
https://github.com/DelineaXPM/dsv-cli/releases
https://github.com/DelineaXPM/dsv-k8s-sidecar
https://github.com/DelineaXPM/dsv-cli/releases
https://github.com/DelineaXPM/dsv-k8s
https://github.com/DelineaXPM/dsv-cli/releases

Update Notes

new feature: The UI can show metadata for users without read permissions, but
who have list permissions.

fixed: A UI logout now successfully invalidates the session as well as discarding
the token.

February
2023

CLI Release Notes

new feature: The UI now supports Break Glass configuration.

new feature: BYOK commands have been added to the CLI with dsv byok

update.`

improvement: The CLI supports the following new flags in the Rest API and CLI for
searching and sorting.

- dsv engine list: new --query, -q, –pool-name, –sort, --sorted-by flags.
See dsv engine list --help
- dsv pool list: new --query, -q, --sort, --sorted-by flags. See dsv pool
list --help * dsv role search: new --sort, --sorted-by flags. See dsv role
search --help
- dsv client search: new --sort flag allows sorting of client credentials
by created time.
- dsv user groups: new --query, -q, --limit, --cursor, --sort flags. See
dsv user groups --help
- dsv groups search: new --sort, --sorted-by flags See dsv groups
search --help
- dsv user search: new --sort, --sorted-by flags. See dsv user search -
-help
- dsv policy search: new --sort, --sorted-by flags. See dsv policy
search --help

improvement: Security updates now prevent hijacking of the UI in a frame.

improvement: Security updates now prevent hijacking of the UI in a frame.

January
2023

CLI Release Notes

new feature: The following installers have been added for all architectures:
Homebrew, Aqua, PowerShell, Curl, Snap, and Scoop.

Delinea DevOps Secrets Vault Administrator Guide Page 266 of 284

Release Notes

https://github.com/DelineaXPM/dsv-cli/releases
https://github.com/DelineaXPM/dsv-cli/releases

Update Notes

improvement: All new development can now be added directly to GitHub, rather
than using bulk changes. As a result, our workflows are now updated with
additional internal tools, including GoReleaser.

fixed: Fixed an issue where authentication providers and SIEM pages were not
shown in the UI for some users.

December
2022

CLI Release Notes

improvement: Search functions have been ported to Rest from GraphQL.

improvement: The character limit for policies has been increased from 2k to 8k.

fixed: User members of groups that were delegated rights to create groups and
roles were granted the rights in the CLI and API but denied those rights in the UI.
Now, the delegated rights are now correctly recognized in the CLI, API, and UI.

fixed: Fixed a bug that incorrectly required a data field when updating a secret in
the UI.

November
2022

CLI Version: 1.39.0

new feature: A new dsv-gitlab plugin is available. The plugin integrates into GitLab
CI to retrieve secrets from DSV.

improvement: An endpoint was added to view expired service principals and allow
for manual deletion.

improvement: Secrets are now masked in the Jenkins plugin logs.

improvement: Context was added to a dialog that alerts the user when deleting a
pool with engines attached.

improvement: Updates have been made to the caching rules for sensitive UI
pages.

improvement: Users are prohibited from deleting a break glass secret.

improvement: The API now deletes engines immediately, instead of allowing an
optional force flag.

Delinea DevOps Secrets Vault Administrator Guide Page 267 of 284

Release Notes

https://github.com/DelineaXPM/dsv-cli/releases

Update Notes

improvement: References to the root-ca-path and assumed-role flags have
been removed from the CLI documentation.

improvement: In the CLI, usage is no longer printed for unknown flags.

October
2022

CLI Version: 1.38.0

new feature: DSV supports Bring Your Own Key (BYOK) encryption key
management.

improvement: GitHub updates include access to the CLI and a GitHub action, dsv-
github-action, to use Delinea DevOps Secrets Vault for retrieval of your secrets.

new feature: The CLI supports creating a new profile using certificate
authentication.

September
2022

CLI Version: 1.37.0

new feature: The UI includes an Audit page that presents actions recorded for
specific users and the date recorded.

new feature: The UI includes a dashboard that presents total requests for an
adjustable time interval. Total secrets across all vaults is also displayed on the
dashboard.

new feature: Authentication providers can be created and deleted from the UI.

improvement: The default profile can now be changed in the CLI.

improvement: Scriptable initialization for the CLI is available only for
username/password or client credentials authentication.

new feature: The Ansible core collection for Delinea DevOps Secrets Vault is now
available.

improvement: Added the AWS authentication method for Terraform.

August 2022 CLI Version: 1.36.0

new feature: The UI now supports SIEM. The user can create and delete SIEM
integrations from a selection available in Administration.

Delinea DevOps Secrets Vault Administrator Guide Page 268 of 284

Release Notes

https://github.com/DelineaXPM/dsv-github-action
https://github.com/DelineaXPM/dsv-github-action
https://github.com/DelineaXPM/ansible-core-collection

Update Notes

new feature: At login, a Remember me on this device checkbox is added. When
enabled, the default behavior for storing user credentials is maintained. Disable the
checkbox and user credentials are not stored for subsequent logins.

new feature: Added wizard support to add multiple Permission documents to a
single Policy.

new feature: Added wizard support for SIEM functions.

fixed: Corrected an issue where during the init configuration, setting the store type
to none caused and error.

fixed: Resolved some inconsistencies with Role Name casing when creating or
referencing a Role.

July 2022 CLI Version: 1.35.0

new feature: Official binaries are available for Apple M1s for download at:
https://dsv.secretsvaultcloud.com/downloads.

new feature: Splunk is now supported for audit logging in SIEM integrations.

new feature: Edits made to a secret are stored as versions, which can be rolled
back and implemented as the current version of the secret.

new feature: Added support for using Declarative syntax to call our Jenkins plugin
from a pipeline.

new feature: Cloud Authentication support is added to the Go SDK.

new feature: Ansible Plugin now supports the EU domain and other top level
domains.

June 2022 CLI Version: 1.34.0

new feature: Policies can be viewed, created, and deleted in the UI. Basic policy
functionality is supported, with future enhancements to come for full functionality
and customization.

new feature: Kubernetes side car is now supported on Microsoft Windows OS.

new feature: Kubernetes webhook now supports dynamically updating secrets.

May 2022 CLI Version: 1.33.0

Delinea DevOps Secrets Vault Administrator Guide Page 269 of 284

Release Notes

https://dsv.secretsvaultcloud.com/downloads

Update Notes

new feature: The UI now supports the creation of secrets in Shared Vaults, as well
as Home Vaults.

new feature: The clients attached to a Role are viewable in the UI. Clients can also
be created and deleted using new features in the UI.

new feature: Engines and engine pools are now accessible through the UI.
Engines and pools can be viewed, created and deleted in the updated UI.

improvement: CLI timeout is now manually configurable. If a user's CLI is idle for a
predefined amount of time, a timeout is initiated. This is controlled by the
refreshTokenTTLHours value in the config file, and can be set per tenant.

improvement: The creation of a SIEM endpoint inside the CLI is now supported.

April 2022 CLI Version: 1.32.0

new feature: Added Dynamic Secret Support for MongoDB. When using a
MangoDB dynamic secret, you can create and delete local users in a just-in-time
manner in your database.

improvement: The CLI wizard has been updated for improved user interaction.

improvement: Searching inside the CLI is more consistent and convenient.
Resources can be searched without using the search term. This improvement has
been made for Secrets (Home Vault and Root), Groups, Users and Roles.

improvement: Added UI improvements for displaying Home Vault Secrets. Users
now can view the personal secrets in the UI that are created in the Home Vault,
using the CLI.

improvement: The UI for Users and Secrets includes an Audit tab for viewing audit
activity.

improvement: The UI for Secrets allows you to delete secrets.

improvement: The Kubernetes Webhook plug-in now supports custom
namespaces.

improvement: The visual appearance of the UI has been updated to represent our
company brand.

fixed: Fixed an issue with the SIEM integration to allow for endpoint support.

Delinea DevOps Secrets Vault Administrator Guide Page 270 of 284

Release Notes

Update Notes

February
2022

CLI Version: 1.31.0

improvement: Added guided sub-command support on CLI Wizards to create and
update secrets.

improvement: Added support in the Kubernetes Sidecar extension for
Authentication by Cert. The Broker can be configured to use the Certificate method
of authentication instead of client credentials.

fixed: An incorrect response that displayed after editing/updating a Thycotic One
user has been resolved. Previously, updating a Thycotic One user would add an
extra thy-one prefix to the displayed user name.

January
2022

CLI Version: 1.30.0

improvement: When selecting a group in the UI, you will now see a Members tab.
You can use the Members tab to add and remove users to and from the selected
group.

improvement: We have added Role Management to our UI. You can now view,
create, edit, and delete roles, as well as view the client credentials that are
attached to the selected role.

December
2021

CLI Version: 1.29.0

improvement: Our Kubernetes sidecar extension now supports the use of custom
namespaces. Pods can now be restricted to only access secrets located in that
namespace, thereby preventing pods from accessing secrets that they do not need
access to.

improvement: When selecting a user in the UI, you will now see a Membership
tab. Here, you will be able to view the current group membership of the selected
user, as well as edit the group membership.

fixed: When using the CLI wizard to set up a siem connection, a blank input for the
default value of Engine routing would lead to an error "Blank input is invalid". The
CLI now allows the blank input and assumes the default value.

fixed: Previously in the CLI, our parsing function would not allow the creation of a
secret/role with a '-c' suffix in path. The behavior has been corrected.

Delinea DevOps Secrets Vault Administrator Guide Page 271 of 284

Release Notes

Update Notes

fixed: Federated User Accounts (such as thy-one users) were not able to see
management modules in UI, due to an issue with querying the logged-in user's
permissions. The backend query would come up blank because the prefixed user
account (thy-one:) isn't recognized.

fixed: User Accounts that were created with usernames that include uppercase
letters were not able to see management modules in the UI, due to an issue with
querying the logged-in user's permissions. The backend query would come up
blank because the user is not recognized in any policy with an uppercase letter
(usernames are automatically forced to lowercase when referenced to policies).
User and Role creation now forces the casing of characters in user and role names
to lowercase.

fixed: When editing the currently populated displayname field of a user with an
empty string value, the cmd would successfully execute, but it would not actually
change the field to an empty value. We have added error handling that states
"Editing a User's displayname should be 3 to 100 characters."

November
2021

CLI Version: 1.28.0

new feature: Geolocation-Based Routing - Previously, our data flow configuration
was an active-passive failover with the East Coast site as our primary for all U.S.
customers. To ensure the same performance for our West and East Coast
customers, we have changed to an active-active failover configuration. Now, U.S.
customers will automatically route to the site closest to their Data Center, further
minimizing any latency issues. Geolocation is determined by IP address.

improvement: Added the delete function for deleting groups in the UI.

October
2021

CLI Version: 1.27.0

improvement: Added the ability to View and Create Groups in the UI.

improvement: Added the Last Login field to the User Preference Page in the UI.

improvement: Authentication by certificate is now available as an option in the CLI.

fixed: Runtime error when using a bad flag for the dsv group create command.

fixed: Broken Azure authentication due to a change from Microsoft (letter casing
was changed in the Resource Group ID). Reauthorization may be required.

Delinea DevOps Secrets Vault Administrator Guide Page 272 of 284

Release Notes

Update Notes

September
2021

CLI Version: 1.26.0

improvement: Added Support for AWS EC2 instances that use IMDSv2. Support
for IMDSv1 will continue.

improvement: Added the ability to view, create, and edit users in the UI. (Safari not
supported)

fixed: Resolved an issue where Azure authentication fails when attempting to
initialize dsv from an azure VM.

August 2021 CLI Version: 1.25.0

Engine Version: 1.9.0

improvement: Authentication by Certificate now requires a Base64 encoded
private key along with the certificate.

improvement: BreakGlass enhancement - When deleting a user, DSV will now
check to see if the user is a member on the new admin list for breakglass. This is to
ensure that no user on this list is deleted without providing a replacement for the
potential breakglass admin.

improvement: Added guided sub-command support on CLI Wizards for Clients,
BreakGlass, Engine, and Pool.

improvement: In the DSV UI, added the ability to make changes to editable fields
on existing secrets.

July 2021 CLI Version: 1.24.0

improvement: For GCP Dynamic Secrets, added configurable time-to-live for
OAuth.

improvement: Breakglass will now allow duplicate policy entries and cleanup
duplicates upon removal.

improvement: In the DSV UI, improved the view/preview of basic secret attributes.

June 2021 CLI Version: 1.23.0

Engine Version: 1.8.0

Delinea DevOps Secrets Vault Administrator Guide Page 273 of 284

Release Notes

Update Notes

new feature: DSV now supports authentication by certificate.

fixed: Fixed a bug preventing the DSV Engine from connecting in .au regions.

May 2021 CLI Version: 1.22.0

Engine Version:1.7.0

new feature: The emergency Break Glass feature allows DSV users to recover
Super Administrator access if those credentials are lost or compromised.

new feature: Introduced the first version of a web GUI. It includes the ability to list
secrets that you have access to.

new feature: SIEM integration is now available through the DSV engine.

new feature: The DSV Engine can now be run as a service.

April 2021 CLI Version: 1.21.0

new feature: DSV now supports Encryption as a Service using user-supplied keys.

new feature: The report command generates a list of secrets or groups. Use the
secret subcommand to see the secrets available to a user, group, or role. Use the
group subcommand to see the group memberships of a user or role.

improvement: Users and roles can now be searched by provider or fully-qualified
name.

improvement: Thycotic One user login is now interactive in the CLI. The API login
route has been disabled.

March 2021
Release 2

CLI Version: 1.2.0

Engine Version: 1.6

new feature: DSV now offers a fully managed Encryption as a Service.

improvement: Users can be given a display name using the --displayname flag.

improvement: Maximum policy limit per tenant has been increased from 500 to
1,000.

improvement: Secrets can now be accessed by ID using the --id flag.

Delinea DevOps Secrets Vault Administrator Guide Page 274 of 284

Release Notes

Update Notes

improvement: Secret searches can now be sorted using the --sort flag.

March 2021 CLI Version: 1.19.0

Engine Version: 1.5

improvement: Unresponsive SIEM endpoints will be automatically deregistered
after ten failed attempts.

improvement: DSV now supports syslog SIEM integration over TCP.

improvement: The dsv-engine now prioritizes flags over configuration files.

improvement: The help menu for the audit command has been updated.

fixed: When creating a new thycotic-one user, passing an external-id flag will no
longer prevent account creation.

fixed: The dsv-engine wizard for Windows PowerShell and macOS bash no longer
truncates user-token and private-key.

February
2021

CLI Version: 1.18.0

Engine Version: 1.4

new feature: Added wizards for run and register in the DSV Engine.

new feature: Added dynamic secret support for Azure Microsoft Graph API.

improvement: Added DSV_VERBOSITY flag for use with docker image scripts.

fixed: Engines registered in containers will now run using the newly created
configuration file.

January
2021

CLI Version: 1.17.0

Engine Version: 1.3

new feature: Added sendWelcomeEmail property. When a user is created using
Thycotic One for authentication, setting sendWelcomeEmail to true will send a
new login email to the user.

Delinea DevOps Secrets Vault Administrator Guide Page 275 of 284

Release Notes

Update Notes

new feature: Added ability to modify authentication provider details using the edit
subcommand.

improvement: After account lockout from failed authentication, the CLI now
displays the time remaining until reauthentication is available.

improvement: Updated dsv-engine validation and API error messages for clarity.

fixed: When querying log data, the correct dates will display.

fixed: Client credential URL value no longer switches with search.

fixed: External ID is no longer required for Thycotic One users.

December
2020

CLI Version: 1.16.0

Engine Version: 1.2

new feature: Added dynamic secret support for contained MSSQL databases.

new feature: Added ephemeral client credentials. Credentials can be limited using
the --uses and --ttl flags.

improvement: Passwords can no longer be reused, increasing security.

improvement: DSV APIs now limit the number of invalid login attempts, increasing
security.

improvement: Azure dynamic secrets now use consistent naming conventions
between the base and dynamic secret.

improvement: strictTransportHeader is present in requests.

November
2020

CLI Version: 1.15.0

Engine Version: 1.1

new feature: Added dynamic secret support for PostgreSQL and Oracle
databases.

improvement: Engines and pools can now be manipulated via the engine and
pool commands.

Delinea DevOps Secrets Vault Administrator Guide Page 276 of 284

Release Notes

Update Notes

October
2020

CLI Version: 1.14

Engine Version: 1.0

new feature: Added the DSV Engine. This agent is installed on the customer
network for access while limiting the need to open the firewall. Initially for database
dynamic secrets, but in the future will be used for password rotation,
authentication, or other needs.

new feature: Bootstrapped client credentials. When creating client credentials, a
one-time use URL can be created so that the new machine or application can
retrieve the Client Secret.

September
2020

CLI Version: 1.13

improvement: CLI name changed from "thy" to "dsv" in downloads and
documentation for all commands

new feature: Home Vault GA. Completed Roles, GetByVersion, Rollback, Restore,
Policy for giving others access.

improvement: Wizards for Groups will not allow invalid Users

improvement: Wizards for Users look for Auth provider and act accordingly rather
than ask for a password first

improvement: secrets attributes can be updated without affecting other fields

improvement: Thycotic One users not sent sign-up emails by default. Can change
this setting

improvement: whoami command provides more information for cloud auth
providers

improvement: Group names can't have spaces

improvement: Roles with Auth providers must include an external ID

August 2020
(Update 1)

CLI Version: 1.12.1

fixed: CLI update check

Delinea DevOps Secrets Vault Administrator Guide Page 277 of 284

Release Notes

Update Notes

August 2020 CLI Version: 1.12

new feature: Home Vault Beta. Users get their own secret space without needing a
policy.

improvement: Global flags defined

improvement: Policy update help information and examples.

improvement: Improved auth-provider help

improvement: Pre-validation for SIEM endpoints

fixed: Added Metadata to Groups

July 2020
(Update 1)

fixed: Enforce case insensitivity on subjects returned in JWT record.

July 2020 CLI Version: 1.11

new feature: SSH public key generation and SSH Certificate signing/storage was
added.

new feature: CLI now contains wizards for Users, Groups, and Roles.

improvement: Policy update help information and examples.

improvement: Added IDs and status information to audit records.

improvement: Standardized on the use of colons for policies instead of slashes

fixed: Enhancements to auth providers.

fixed: Group memberships are not evaluated for policy updates.

fixed: Group member sometimes returned code 500 (internal server error) on
deletion attempt.

June 2020 CLI Version: 1.10

new feature: SIEM endpoints. Support Syslog, CEF, and JSON log formatting on
TLS,TCP, UDP, HTTP, and HTTPS transport protocols.

new feature: Introduced CLI wizards to PKI, SIEM, Policy, and Auth-provider
commands for simplified human navigation.

Delinea DevOps Secrets Vault Administrator Guide Page 278 of 284

Release Notes

Update Notes

improvement: Additional Secrets search capabilities. Enabled search for Secrets
on any attribute, path, or description.

improvement: Provide the ability to add a CRL URL to a signing certificate.

fixed: CLI version check fixed regardless of the update cache

fixed: Group membership evaluated for policy updates.

update: Deprecated "settings" attribute on the Configuration document will be
removed next release. All auth provider management should go through the
config/auth endpoint

May 2020 CLI Version: 1.9

new feature: Google Cloud Platform (GCP) Dynamic secrets. DSV can issue
ephemeral secrets for GCP service accounts

new feature: OIDC Support. Thycotic One can connect to any IDP provider that
supports OIDC and in-turn those users can authenticate to DSV.

improvement: If a base secret has a dynamic secret linked to it, it errors on attempt
to delete it.

improvement: New flag for singing a leaf certificate that includes the singing
certificate for the trust chain

fixed: Groups with 3rd party auth fixed

fixed: Client permission check

fixed: Restore user with 3rd party auth

April 2020 CLI Version: 1.8

new feature: Google Cloud Platform Authentication using service accounts and
GCE metadata

new feature: X.509 Certificate Issuance. Certificate signing capablilties.

improvement: Azure dynamic secret role validation

improvement: Azure dynamic secret temporary service principal cleanup. (deletes
expired service principals in Azure MSI)

Delinea DevOps Secrets Vault Administrator Guide Page 279 of 284

Release Notes

Update Notes

improvement: Dynamic secrets easier to edit

fixed :CLI encryption key works if store path is in a non-default location.

fixed :Client tokens used even if already logged in.

March 2020 new feature: Azure Dynamic Secrets. DSV can use Azure Service Principals to
provide ephermal credentials

new feature: (API only) Ability to issue X.509 certificates

improvement: Ability to retrieve auth settings by version

improvement: Make help commands available even if the CLI config is missing

improvement: Protect error check. Protect against creating policy errors

improvement: Ability to search for dynamic secrets given a base secret

improvement: Improved error reporting for dynamic secrets

fixed : A malformed policy could prevent reading all policies.

February
2020

improvement: protect against user lockout. When editing authentication providers,
block any changes that locks the user out of the account.

improvement: audit search results now inclusive of the dates in a range
(previously the first day was omitted).

improvement: consistent version listing. Removed the “v” in the version number
when searching older versions to be consistent with other listings.

new feature: AWS Dynamic secrets. DevOps Secrets Vault can use AWS Security
Token Service (STS) to provide ephemeral AWS credentials.

January
2020

improvement: the rollback command allows you to roll back Secrets (and
Policies and Authentication Providers) to their earlier versions

improvement: Windows users can now more easily edit Secrets, with Notepad or
another designated editor opening right from the command line

fixed: a defect in the Kubernetes extension caused verbose error reporting on
irrelevant conditions

Delinea DevOps Secrets Vault Administrator Guide Page 280 of 284

Release Notes

Update Notes

December
2019

improvement: the thy init command no longer requires an --advanced flag, as
it now always steps through key initialization settings

improvement: the DSV CLI executables will now prompt when a new version is
available for download

fixed: a defect in CLI audit log listing behavior would show listings even when the
start date was in the future and would show listings later than the end date

November
2019

improvement: after deleting a Secret, Role, User, Group, Policy, or Authentication
Provider, the new restore command will undelete the item up to 72 hours later

improvement: architectural changes back uptime of 99.999 percent; continuous
backup enables hot backup fail-over in under a minute

October
2019

improvement: a Secret’s data, attributes, and description can be individually
updated via the update command’s new --data, --attributes and --desc flags,
respectively

improvement: the Secret update command’s new Boolean --overwrite flag controls
whether the --data flag’s content overwrites or merges with extant data object fields

improvement: improvement: updated server side policy caching to better handle
permission updates

improvement: the CLI now supports finding and examining audit logs, previously
possible only via the API

September
2019

improvement: better scaling of configuration files achieved by keeping policies and
authentication providers in separate files

improvement: the permissions command has been superseded by the policy
command; named policies no longer require everyone to modify a global document

improvement: the new Change Password feature enables users to change their
passwords

Delinea DevOps Secrets Vault Administrator Guide Page 281 of 284

Release Notes

Update Notes

improvement: adding Users to a Group achieves permissions delegation

improvement: deleting a Secret now deletes all past versions, rather than just the
latest

fixed: the API Audit Search function’s bug, related to the improperly named Secret
parameter, is resolved by the properly named path parameter

August 2019 fixed: issue where the refresh token generated by Thycotic One authentication was
not correctly generating the full subject name and could cause access denied
errors

fixed: issue where adding a pre-existing Thycotic One user as a DSV User would
not correctly save the Thycotic One user id

fixed: issue where the config created and updated metadata fields that were not
properly shown in responses

added: version validation to config update to help prevent conflicts

July 2019 first General Availability of the service

Support

The Delinea Support Community is available at: https://support.delinea.com/s/.

This page provides a high-level summary of support options.

Note: Support options depend on license status, with paid licenses having more support channels. See our
Support Services Guide for complete details about our support policy.

Free Licenses

If you have a free license, use this document collection to find information about DSV and how to use it.

Paid Licenses

Paid DSV subscribers have access to support by phone and email. You also can open a case in Delinea's support
ticketing system, which promotes follow-through to issue resolution.

Delinea DevOps Secrets Vault Administrator Guide Page 282 of 284

Support

https://thycotic.my.salesforce.com/sfc/p/#37000000KAUl/a/1G000000TU6g/_z6_M8tD_6.x3JB2LOI8q20vzWkkiLhKbFv0Wec9Fw0

n Use the means you prefer, except for Severity 1 issues—for those, always use phone support.

Severity 1 means a critical problem that has caused complete loss of service and work cannot reasonably
continue at your worksite.

Obtaining a Support PIN

To obtain support by email or phone, first log in to the Support Portal to obtain a PIN. The PIN validates that your
license includes support, and you must provide the PIN in your email or when you call. The PIN also makes it easier
for the person helping you to locate your customer records and give you better support.

n Visit the Support Portal Login Page using the credentials you received when your organization subscribed to the
DSV service.

n After logging in, you will be on the main page. Click on the large blue bar labeled PIN to obtain a PIN number.

Support by Phone

Delinea delivers support by phone worldwide. Select the applicable number from this list:

Region Country Support Number

AMERICAS all +1 202 991 0540

EMEA UK +44 20 3880 0017

Germany +49 69 6677 37597

APAC Australia +61 3 8595 5827

Philippines +63 2 231 3885

New Zealand +64 9-887 4015

Singapore +65 3157 0602

Support by Email

Send your email to support@thycotic.com with the PIN number as part of the subject line of your email, for
example:

n PIN 345 Workflow Stopped Unexpectedly

Include this information:

Delinea DevOps Secrets Vault Administrator Guide Page 283 of 284

Support

https://support.delinea.com/login

1. company name

2. contact name

3. contact phone number

4. product name

5. details of the issue

You must send your email using an email address already noted in your account with Delinea.

n Sending a support request from an email address not on file may delay our response.

Support Ticketing

As an alternative to support by email or phone, you can open a support ticket and track your issue to resolution.

n Visit the Support Portal Login Page/login using the credentials you received when your organization subscribed
to the DSV service.

n After logging in, you will be on the main page. Click the Cases tab, then Create a Case.

n Follow the instructions to complete your case.

Delinea DevOps Secrets Vault Administrator Guide Page 284 of 284

Support

https://support.delinea.com/

	Administrator Guide
	DevOps Secrets Vault Overview
	Key Features
	Free Version and Quick Start
	API

	Quick Links
	Delinea Links
	Third-Party Downloads

	Quick Start
	Step 1 - Create a DSV Account
	Video Guide
	Procedure

	Step 2 - Download the Command Line Interface (CLI)
	Video Guide
	Windows Guide
	Linux Video Guide

	Procedure

	Step 3 - Initialize the CLI
	Video Guide
	Procedure

	Step 4 - Create a Secret
	Video Guide
	Procedure
	Creating Secrets from a File
	Creating Secrets from Direct Command
	Retrieve a Secret
	Filter JSON Command Output for Specific Fields
	Separately Update Attributes, Data, and Description

	Step 5 - Create Users
	Creating Local Users
	Authenticating the Local User

	Step 6 - Provide Users Access to Secrets
	Creating a User Group
	Creating a Policy to Allow Access
	Creating a Policy to Deny Access

	Developer Resources
	DSV API
	SDKs
	Downloads
	Integrations
	Delinea In-Product Integrations
	Delinea In-Product Customization
	Delinea Created Unpaid Integrations
	Third Party Integrations to Delinea
	Third Party Supporting Tools
	Professional Services Integrations

	APIs and SDKs
	Downloads

	DSV Concepts
	Architecture and Security
	Availability
	Business Continuity and Disaster Recovery
	Allow List
	Confidentiality
	Data at Rest
	Data in Transit

	Client Authentication
	Integrity Checks
	CLI Code Signing
	Token Signing

	Personally Identifiable Information (PII) and GDPR
	Third Party SOC 2 Conformance Assessment

	Audit
	Permissions
	API Endpoint
	CLI Command
	UI View
	SIEM
	Available Audit Logs

	Break Glass
	Bring Your Own Key (BYOK) Encryption
	DSV's BYOK Approach

	Dynamic Secrets
	Linking
	Search for linked Secrets

	Encryption as a Service
	DSV Engine
	Organization Firewall

	Usage
	CLI Reference
	CLI Command Syntax
	Objects
	Workflows
	Parameters

	Output Modifiers
	Encoding
	Filter
	Out

	Output Piping
	Secret
	Commands that Act on Secrets
	Examples

	User
	Commands that Act on Users
	Examples

	Group
	Commands that Act on Groups
	Examples

	Role
	Commands that Act on Roles
	Examples

	Client
	Commands that Act on Clients
	Examples

	Policy
	Commands that Act on Policy
	Policy Evaluation
	Policy Examples

	Admin Policy and Auth Providers
	Commands that Act on Configuration

	Audit Command
	Flags
	Usage Examples

	Report Command
	Secret Reporting
	Group Reporting

	Home Vault
	Examples

	DSV UI Reference
	Navigating the UI
	Customizing the UI
	Audit
	Viewing Vaults
	Dashboard
	Secrets
	Viewing Secrets Metadata
	Accessing Audit Details
	Creating and Deleting Secrets

	Auth Providers
	Downloading AuthProvider Information
	Create a New Authentication Provider

	Users
	Viewing Users
	Creating Users
	Assigning Group Membership

	Groups
	Viewing Groups
	Creating Groups
	Deleting a Group

	Roles
	Viewing Roles
	Viewing Role Details
	Creating Roles
	Deleting a Role

	Policies
	Viewing Policies
	Viewing Policy Details
	Creating a New Policy

	Engines and Pools
	Viewing and Pools
	Creating a Pool
	Viewing Pool Details
	Viewing Attached Engines
	Creating a New Engine
	Viewing Engine Details

	SIEM
	Viewing SIEM Integrations
	Creating a SIEM Integration for Auditing
	Deleting a SIEM Integraion

	Authentication
	Password
	Client Credentials
	Thycotic One Authentication
	Third Party Authentication
	Profiles
	Add a Profile to a Config
	See the Config Contents
	Using an Alternate Profile for a Specific CLI Action

	Authentication: AWS
	AWS Authentication Provider
	AWS User Example
	AWS Role Example

	Authentication: Azure
	Azure Authentication Provider
	Azure User Assigned MSI Example
	Azure Resource Group

	Authentication Google Cloud Platform (GCP)
	Google Service Account Authentication
	Google Compute Engine (GCE) Metadata Authentication
	Google Kubernetes Engine (GKE) Authentication

	Authentication: OIDC
	OIDC Providers
	Common Steps
	Google Identity Provider Example
	Azure AD OIDC Example
	Okta Identity Provider Example

	Authentication: Certificate
	Prerequisites
	CLI Configuration

	Dynamic Secrets
	Linking
	Search for linked Secrets
	IaaS Dynamic Secrets
	AWS Dynamic Secrets
	AAD Graph Dynamic Secrets
	Microsoft Graph Dynamic Secrets
	GCP Dynamic Secrets

	Database Dynamic Secrets
	DSV Engine Required
	Microsoft SQL Dynamic Secrets
	MySQL Dynamic Secrets
	Oracle Dynamic Secrets
	Dynamic Secret Examples
	PostgreSQL Dynamic Secrets
	MongoDB Dynamic Secrets

	DSV Engine
	Starting an Engine
	Engine Wizard
	Engine Flags
	CLI & Engine Program

	Starting an Engine in a Container
	Installing the Engine as a Service/Daemon
	Supported Service Frameworks/Process Managers
	Installation Commands
	Installation Steps

	Encryption as a Service
	Management Subcommands
	Operation Subcommands
	Key Management Subcommands
	Flags
	Encrypting Data
	Automatic Key Creation
	Manual Key Creation
	String Encryption
	File Encryption

	Key Rotation and Versioning
	Creating a New Key Version
	Rotating to an Existing Key Version

	Manual Key Updating

	Certificate Issuance
	Generate a Signing Certificate
	Register (Import) a Signing Certificate
	Generate and Sign a Leaf Certificate
	Sign a Certificate Given a Certificate Signing Request (CSR)
	SSH Key Issuance
	Adding an SSH public key to a server
	Trusting a group of keys signed by a root key

	Break Glass
	Commands and Flags
	Break Glass Setup
	Trigger Break Glass

	Bring Your Own Key (BYOK) Configuration
	Verify Key Changes in Your AWS Account: Assuming CloudTrail is Enabled

	SIEM Audits
	Syslog
	Common Event Format (CEF)
	JSON
	Splunk

	Tutorials
	Administration and Configuration Tutorials
	Policy Tutorial
	Policy Structure
	Least Privilege Approach
	Create Users, Groups and Permissions
	Initialize the New Admin Account
	Delegate Secret Management Rights to DevOps Team1
	Test the DevOps Team Permissions to Read Secrets
	Grant Groups the Ability to Search Entities via List Privileges
	Test the DevOps Team Permissions to Search Resources
	Delegate Rights to Manage Policies to a DevOps Team Member
	Test DevOpsUsr1's Permission to Create Policies
	Delegate Rights to Create Roles to a DevOps Team Member
	Create DevOpsTeam1's Client Credentials for an Application
	Test the Read Secret Permissions of the DevOpsTeam1's Client Credential

	Use DSV With Direnv
	Challenges
	Quick Start on Creating a Secret Like This
	DSV Tweaks
	Limit Scope Of Secret When Possible

	Azure Dynamic Secrets
	Challenge/Scenarios
	Solution
	Benefits

	DSV Integrations
	Kubernetes
	Selecting a Kubernetes plugin
	Kubernetes Sidecar Architecture
	Description of Operations
	Introduction to the Client
	Introduction to the Broker

	Kubernetes Mutating Webhook
	Architecture
	Implementing the Kubernetes Mutating Webhook

	Terraform
	Jenkins
	Usage
	Jenkins Declarative Pipeline
	Pipeline Script

	GitHub
	GitLab
	Azure DevOps
	DSV lookup plugin for Ansible
	Requirements
	Authentication
	Usage
	Permissions
	Example

	Puppet
	Chef

	Release Notes
	DSV Cloud Service: Change Log

	Support
	Free Licenses
	Paid Licenses
	Obtaining a Support PIN
	Support by Phone
	Support by Email
	Support Ticketing

