
Centrify Infrastructure Services

ADEdit Command Reference and Scripting Guide

December 2018 (release 18.11)

Centrify Corporation

Legal Notice

This document and the software described in this document are furnished under and are subject to the
terms of a license agreement or a non-disclosure agreement. Except as expressly set forth in such license
agreement or non-disclosure agreement, Centrify Corporation provides this document and the software
described in this document “as is” without warranty of any kind, either express or implied, including, but
not limited to, the implied warranties of merchantability or fitness for a particular purpose. Some states do
not allow disclaimers of express or implied warranties in certain transactions; therefore, this statement
may not apply to you.

This document and the software described in this document may not be lent, sold, or given away without
the prior written permission of Centrify Corporation, except as otherwise permitted by law. Except as
expressly set forth in such license agreement or non-disclosure agreement, no part of this document or
the software described in this document may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, or otherwise, without the prior written consent of
Centrify Corporation. Some companies, names, and data in this document are used for illustration
purposes and may not represent real companies, individuals, or data.

This document could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein. These changes may be incorporated in new editions of this document.
Centrify Corporation may make improvements in or changes to the software described in this document at
any time.

© 2004-2018 Centrify Corporation. All rights reserved. Portions of Centrify software are derived from
third party or open source software. Copyright and legal notices for these sources are listed separately in
the Acknowledgements.txt file included with the software.

U.S. Government Restricted Rights: If the software and documentation are being acquired by or on behalf
of the U.S. Government or by a U.S. Government prime contractor or subcontractor (at any tier), in
accordance with 48 C.F.R. 227.7202-4 (for Department of Defense (DOD) acquisitions) and 48 C.F.R. 2.101
and 12.212 (for non-DOD acquisitions), the government’s rights in the software and documentation,
including its rights to use, modify, reproduce, release, perform, display or disclose the software or
documentation, will be subject in all respects to the commercial license rights and restrictions provided in
the license agreement.

Centrify, DirectControl, DirectAuthorize, DirectAudit, DirectSecure, DirectControl Express, Centrify for
Mobile, Centrify for SaaS, DirectManage, Centrify Express, DirectManage Express, Centrify Suite, Centrify
User Suite, Centrify Identity Service, Centrify Privilege Service and Centrify Server Suite are registered
trademarks of Centrify Corporation in the United States and other countries. Microsoft, Active Directory,
Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation
in the United States and other countries.

Centrify software is protected by U.S. Patents 7,591,005; 8,024,360; 8,321,523; 9,015,103; 9,112,846;
9,197,670; 9,442,962 and 9,378,391.

The names of any other companies and products mentioned in this document may be the trademarks or
registered trademarks of their respective owners. Unless otherwise noted, all of the names used as
examples of companies, organizations, domain names, people and events herein are fictitious. No
association with any real company, organization, domain name, person, or event is intended or should be
inferred.

• • • • • •

ADEdit Command Reference and Scripting Guide 2

Contents

About this guide 13
Intended audience 13

Using this guide 13

Viewing command help 14

Documentation conventions 15

Finding more information about Centrify products 15

Contacting Centrify 16

Getting additional support 16

Introduction 17
How ADEdit uses Tcl 17

What ADEdit provides 17

How ADEdit works with other Centrify components 20

ADEdit components 22

ADEdit context 23

Logical organization for ADEdit commands 25

Getting started with ADEdit 27
Starting ADEdit for the first time 27

Basic command syntax 27

Learning to use ADEdit 30

Binding to a domain and domain controller 32

Selecting an object 35

Creating a new object 37

Examining objects and context 37

Modifying or deleting selected objects 39

Saving selected objects 40

• • • • • •

ADEdit Command Reference and Scripting Guide 3

Pushing and popping context 40

Creating ADEdit scripts 40

ADEdit commands organized by type 45
General-purpose commands 45

Context commands 46

Object-management commands 46

Utility commands 56

Security descriptor commands 57

Using the demonstration scripts 58
Zone containers and nodes 59

Create Tcl procedures 61

Reading command line input 63

Create a parent zone 65

Create child zones 67

Create privileged commands and roles 69

Add and provision UNIX users 74

Simple tools 77

Run a script from a script 83

ADEdit command reference 89
add_command_to_role 90

add_map_entry 92

add_map_entry_with_comment 94

add_object_value 96

add_pamapp_to_role 98

add_sd_ace 100

• • • • • •

Contents 4

bind 104

clear_rs_env_from_role 107

create_computer_role 109

create_zone 112

delegate_zone_right 116

delete_dz_command 120

delete_local_group_profile 122

delete_local_user_profile 125

delete_map_entry 127

delete_nis_map 129

delete_object 131

delete_pam_app 133

delete_role 135

delete_role_assignment 138

delete_rs_command 139

delete_rs_env 141

delete_sub_tree 143

delete_zone 146

delete_zone_computer 148

delete_zone_group 150

delete_zone_user 152

dn_from_domain 153

dn_to_principal 155

domain_from_dn 157

explain_sd 158

forest_from_domain 162

get_adinfo 163

get_bind_info 165

• • • • • •

ADEdit Command Reference and Scripting Guide 5

get_child_zones 168

get_dz_commands 170

get_dzc_field 172

get_group_members 178

get_local_group_profile_field 181

get_local_groups_profile 184

get_local_user_profile_field 187

get_local_users_profile 190

get_nis_map 193

get_nis_map_field 195

get_nis_map_with_comment 197

get_nis_maps 200

get_object_field 202

get_object_field_names 204

get_objects 207

get_pam_apps 210

get_pam_field 212

get_parent_dn 215

get_pending_zone_groups 216

get_pending_zone_users 218

get_pwnam 220

get_rdn 222

get_role_apps 223

get_role_assignment_field 226

get_role_assignments 228

get_role_commands 231

get_role_field 233

get_role_rs_commands 237

• • • • • •

Contents 6

get_role_rs_env 239

get_roles 241

get_rs_commands 243

get_rs_envs 245

get_rsc_field 247

get_rse_cmds 250

get_rse_field 252

get_schema_guid 255

get_zone_computer_field 256

get_zone_computers 259

get_zone_field 261

get_zone_group_field 266

get_zone_groups 269

get_zone_nss_vars 271

get_zone_user_field 273

get_zone_users 276

get_zones 278

getent_passwd 280

guid_to_id 282

help 283

is_dz_enabled 285

joined_get_user_membership 287

joined_name_to_principal 288

joined_user_in_group 290

list_dz_commands 292

list_local_groups_profile 294

list_local_users_profile 297

list_nis_map 299

• • • • • •

ADEdit Command Reference and Scripting Guide 7

list_nis_map_with_comment 301

list_nis_maps 304

list_pam_apps 306

list_pending_zone_groups 308

list_pending_zone_users 310

list_role_assignments 312

list_role_rights 315

list_roles 317

list_rs_commands 320

list_rs_envs 322

list_zone_computers 324

list_zone_groups 326

list_zone_users 328

manage_dz 331

move_object 333

new_dz_command 334

new_local_group_profile 336

new_local_user_profile 339

new_nis_map 343

new_object 346

new_pam_app 348

new_role 350

new_role_assignment 352

new_rs_command 355

new_rs_env 357

new_zone_computer 359

new_zone_group 362

new_zone_user 364

• • • • • •

Contents 8

pop 367

principal_from_sid 368

principal_to_dn 370

principal_to_id 372

push 373

quit 375

remove_command_from_role 376

remove_object_value 379

remove_pamapp_from_role 381

remove_sd_ace 384

rename_object 387

save_dz_command 389

save_local_group_profile 391

save_local_user_profile 394

save_nis_map 397

save_object 399

save_pam_app 401

save_role 403

save_role_assignment 405

save_rs_command 407

save_rs_env 408

save_zone 410

save_zone_computer 412

save_zone_group 414

save_zone_user 416

select_dz_command 418

select_local_group_profile 420

select_local_user_profile 423

• • • • • •

ADEdit Command Reference and Scripting Guide 9

select_nis_map 426

select_object 428

select_pam_app 430

select_role 433

select_role_assignment 436

select_rs_command 438

select_rs_env 440

select_zone 443

select_zone_computer 446

select_zone_group 448

select_zone_user 450

set_dzc_field 452

set_ldap_timeout 459

set_local_group_profile_field 460

set_local_user_profile_field 464

set_object_field 468

set_pam_field 470

set_role_assignment_field 473

set_role_field 476

set_rs_env_for_role 481

set_rsc_field 483

set_rse_field 489

set_sd_owner 491

set_user_password 494

set_zone_computer_field 496

set_zone_field 498

set_zone_group_field 502

set_zone_user_field 505

• • • • • •

Contents 10

show 508

sid_to_escaped_string 510

sid_to_uid 512

validate_license 514

ADEdit Tcl procedure library reference 517
add_user_to_group 517

convert_msdate 519

create_adgroup 520

create_aduser 522

create_assignment 523

create_dz_command 525

create_group 527

create_nismap 529

create_pam_app 530

create_role 532

create_rs_command 534

create_rs_env 536

create_user 537

decode_timebox 540

encode_timebox 542

explain_groupType 543

explain_ptype 545

explain_trustAttributes 546

explain_trustDirection 547

explain_userAccountControl 549

get_all_zone_users 550

get_effective_groups 552

• • • • • •

ADEdit Command Reference and Scripting Guide 11

get_effective_users 553

get_user_groups 554

get_user_role_assignments 556

list_zones 558

lmerge 560

modify_timebox 562

precreate_computer 564

remove_user_from_group 569

set_change_pwd_allowed 570

set_change_pwd_denied 572

Timebox value format 574
Hex string 574

Hour mapping 574

Day mapping 576

Using ADEdit with classic zones 578
Enabling authorization in classic zones 578

Working with privileged commands and PAM applications 579

Working with restricted shell environments and commands 579

Creating computer-level role assignments in classic zones 581

Quick reference for commands and library
procedures 584

• • • • • •

Contents 12

About this guide

This ADEdit Command Reference and Scripting Guide describes how to use the
Centrify ADEdit command-line interface to manage Centrify objects stored in
Microsoft Active Directory. ADEdit is a Tool command language (Tcl)
application that enables administrators to run commands and write scripts
that modify data in Active Directory directly from their Linux or UNIX console.

Intended audience

This guide describes ADEdit for UNIX administrators who want to manage
Centrify and Active Directory from a Linux, UNIX, or Mac computer through CLI
commands or scripts. It assumes that you are well-versed in Active Directory’s
architecture and management, and that you’re equally well-versed in Centrify
access control and privilege management features. For more complete
information about Centrify software and management tasks, see the
Administrator’s Guide for Linux and UNIX..

Using this guide

This guide describes how to use ADEdit and provide reference information for
all ADEdit commands and the ADEdit library. It does not describe how to write
Tcl scripts using ADEdit commands. For a comprehensive explanation of Tcl
and its use, see Tcl and the Tk Toolkit by John K. Ousterhout and Ken Jones
(published by Addison-Wesley).

The chapters provide the following information:

Introduction describes the basic features of ADEdit and the types of
commands it offers, including how it fits in with other components of
Centrify software.

• • • • • •

ADEdit Command Reference and Scripting Guide 13

Getting started with ADEdit describes the basics of ADEdit command
syntax and the logical flow of commands that you need to be familiar
with before you begin executing interactive ADEdit sessions or writing
ADEdit scripts.

ADEdit commands organized by type assembles the ADEdit commands
into logical groups, corresponding to their usage, and summarizes each
command.

Using the demonstration scripts provides script samples for a series of
common tasks that you can incorporate into your scripts.

ADEdit command reference provides full command descriptions in
alphabetical order.

ADEdit Tcl procedure library reference describes the Tcl procedures
available in the ade_lib Tcl library that use ADEdit commands to perform
common administrative tasks.

Timebox value format describes the format of the timebox value used to
set hours of the week when a role is enabled and disabled.

Using ADEdit with classic zones summarizes the differences between
working with classic and hierarchical zone and lists the commands that
are specifically for managing authorization in classic zones.

Quick reference for commands and library procedures provides a
summary of all ADEdit commands and procedures, including the
command syntax and abbreviations.

Viewing command help

ADEdit provides brief help text for each command. To view the help, enter
help command_name from the ADEdit command prompt. For example, to see
the help for the validate_license command you would enter the following:

>help validate_license

You can also display the general help text for ADEdit by entering man adedit

from the shell.

• • • • • •

About this guide 14

Documentation conventions

The following conventions are used in Centrify documentation:

Fixed-width font is used for sample code, program names, program
output, file names, and commands that you type at the command line.
When italicized, this font indicates variables. Square brackets ([])
indicate optional command-line arguments.

Bold text is used to emphasize commands or key command results;
buttons or user interface text; and new terms.

Italics are used for book titles and to emphasize specific words or terms.
In fixed-width font, italics indicate variable values.

Standalone software packages include version and architecture
information in the file name. Full file names are not documented in this
guide. For complete file names for the software packages you want to
install, see the distribution media.

For simplicity, UNIX is used to refer to all supported versions of the UNIX
and Linux operating systems. Some parameters can also be used on Mac
OS X computers.

Finding more information about Centrify products

Centrify provides extensive documentation targeted for specific audiences,
functional roles, or topics of interest. If you want to learn more about Centrify
and Centrify products and features, start by visiting the Centrify website. From
the Centrify website, you can download data sheets and evaluation software,
view video demonstrations and technical presentations about Centrify
products, and get the latest news about upcoming events and webinars.

For access to documentation for all Centrify products and services, visit the
Centrify documentation portal at docs.centrify.com. From the Centrify
documentation portal, you can always view or download the most up-to-date
version of this guide and all other product documentation.

For the most up to date list of known issues, please login to the Customer
Support Portal at http://www.centrify.com/support and refer to Knowledge
Base articles for any known issues with the release.

• • • • • •

ADEdit Command Reference and Scripting Guide 15

https://www.centrify.com/solutions/
https://docs.centrify.com/Content/02-navigation-pages/HOME-centrify-docs.htm
https://docs.centrify.com/
http://www.centrify.com/support

Contacting Centrify

You can contact Centrify by visiting our website, www.centrify.com. On the
website, you can find information about Centrify office locations worldwide,
email and phone numbers for contacting Centrify sales, and links for following
Centrify on social media. If you have questions or comments, we look forward
to hearing from you.

Getting additional support

If you have a Centrify account, click Support on the Centrify website to log on
and access the Centrify Technical Support Portal. From the support portal,
you can search knowledge base articles, open and view support cases,
download software, and access other resources.

To connect with other Centrify users, ask questions, or share information, visit
the Centrify Community website to check in on customer forums, read the
latest blog posts, view how-to videos, or exchange ideas with members of the
community.

• • • • • •

About this guide 16

https://www.centrify.com/
https://www.centrify.com/account/login.asp?msg=loginrequired&ret=%2Fsupport%2Fportal%2Easp
http://community.centrify.com/

Introduction

Centrify ADEdit is a command-line interface (CLI) utility that enables UNIX
administrators to manage Centrify objects—such as zones, rights, and roles—
in Microsoft Active Directory. This chapter introduces you to ADEdit’s main
features and architecture.

How ADEdit uses Tcl

ADEdit is implemented as a Tcl application. Tcl (Tool Command Language) is a
powerful but easy to learn programming language that provides full scripting
ability. With Tcl, administrators can write simple management scripts that
perform complex tasks with a single execution. Experienced Tcl programmers
can also include ADEdit commands in their own Tcl applications to add
Centrify management capabilities and GUI interfaces for ADEdit operations to
those applications.

Administrators who aren’t familiar with Tcl can use ADEdit as a scripting tool
on their Linux or UNIX computer to manage Centrify directly from the
command line or by combining commands into scripts.

What ADEdit provides

The purpose of ADEdit is to let an administrator with the proper Active
Directory permissions fully manage Centrify objects from a UNIX console. By
using ADEdit, for example, an administrator working on a Linux computer can
perform common administrative tasks such as create a new user account,
add a user to a new group, or assign a user to a new role. That same
administrator might also query Active Directory for information about zones,
groups, roles, or any other Centrify objects.

• • • • • •

ADEdit Command Reference and Scripting Guide 17

Because ADEdit is a more powerful and flexible tool, it is intended to replace
some of Centrify’s previous-generation UNIX command line programs such as
adupdate and adquery. Those previous-generation tools limited the
operations administrators could perform to a computer’s currently joined
zone and domain. With ADEdit, administrators can manage objects in any
zone or domain and perform operations on many more features than were
possible using its predecessors.

To give administrators additional flexibility for performing administrative
tasks, ADEdit also allows for multiple modes of execution and provides its own
accompanying library of predefined scripts for common tasks.

Administration across domains and forests

ADEdit offers complete control of Centrify objects and properties from a Linux
or UNIX console. Administrators with the proper permissions on the Active
Directory domain controller can modify every aspect of operation that the
Access Manager offers. For example, administrators can use ADEdit to create
zones, add groups, delegate permissions, define roles, and modify user
properties, group membership and role assignments.

ADEdit can operate on any domain in any forest. Its host computer does not
need to be joined to a domain to work with that domain. As long as the
administrator has the necessary authentication and rights to work on a
domain, ADEdit can bind to the domain and work on it. ADEdit can also work
simultaneously on multiple domains in multiple forests.

ADEdit enables you to manage all aspects of the access control and privilege
management features of multiple Centrify software from a single CLI tool. For
example, it can replace adupdate and adquery and offers the features of LDAP
clients such as ldapsearch, without the limitations of those command line
programs.

Options for execution

ADEdit offers multiple modes of execution:

Interactive mode. In interactive mode, ADEdit executes single CLI
commands in real time. You can enter a series of commands within a

• • • • • •

Introduction 18

shell to perform simple administrative tasks. ADEdit offers command
history that is persistent from session to session. You can use the up
arrow and Enter keys to review and re-enter commands instead of
retyping complete commands from scratch.

Script execution. ADEdit can accept and execute a Tcl script file that
includes ADEdit commands. The Tcl scripting language includes full
programming logic with variables, logical operators, branching,
functions (called procedures in Tcl), and other useful program-flow
features. As the script executes, ADEdit keeps the Active Directory
objects that it is working on in internal memory. It does not require
repeated queries to Active Directory as it works on an object.

Executable file. You can set up any ADEdit Tcl script as an executable file
that can run by itself on a UNIX platform.

Scripting makes ADEdit a very flexible administration tool. You can use a single
script to handle hundreds or thousands of repetitive tasks that would take a
very long time to perform through the console. And you can write a set of
scripts to quickly and easily check on and respond to current conditions. A
script could, for example, create a new zone, read etc/passwd files on UNIX
computers in that zone, and migrate all existing UNIX users it finds there into
new zone user accounts. Another script could find users in specified groups
and then assign a new role to all users in those groups.

With that power comes responsibility. It’s quite possible for an ADEdit script—
or even a single ADEdit command—to completely erase Active Directory’s
contents if used incorrectly. There are, for the most part, no warnings and
there is no undo feature if this happens. Only knowledgeable users should use
ADEdit, and it is important to test scripts in sample environments before
deploying them to the enterprise.

Library of predefined procedures

ADEdit installs with an accompanying library of utility procedures called the
ade_lib Tcl library. These procedures use ADEdit commands to perform
standard administrative operations such as adding zone users to a zone
group or creating a new Active Directory user. The procedures in the library
also provide examples of how to use ADEdit commands efficiently in Tcl
scripts. From these examples, administrators can learn how to use and adapt
ADEdit commands in their own custom scripts.

• • • • • •

ADEdit Command Reference and Scripting Guide 19

How ADEdit works with other Centrify components

ADEdit is part Centrify Infrastructure Services and works with specific
Windows and UNIX components of the Centrify architecture. As described in
the Administrator’s Guide for Linux and UNIX, Centrify uses Active Directory,
which runs in a Windows network, to stores Centrify-specific data such as
zone information. To make computers part of an Active Directory domain,
administrators deploy a platform-specific Centrify agent. After the agent is
deployed and the computer joins an Active Directory domain, the computer is
a Centrify-managed computer and ADEdit can define, retrieve, modify, and
delete Active Directory and Centrify information for that computer.

Active Directory and ADEdit

Active Directory uses multi-master data storage. It replicates directory data
on multiple domain controllers throughout a domain. Changes in data on one
domain controller are replicated to the other domain controllers in the
domain.

To perform virtually any operation, ADEdit must bind to one or more Active
Directory domain controllers. ADEdit can then query Active Directory for data
within bound domains, retrieve Active Directory objects, modify retrieved
objects, create new objects, and delete existing objects. Those objects include
all Centrify-specific objects such as zone objects, zone user objects, role
objects, and more.

ADEdit is not limited in scope to Centrify-specific information. An
administrator with full privileges could define, retrieve, modify, and
delete information for any object or attribute in Active Directory.

Managed computers and ADEdit

For computers to be managed by Centrify, they must have the Centrify agent
installed and must be joined to an Active-Directory domain. The Centrify agent
includes the following components that work directly with ADEdit:

adclient is a Centrify process running on a managed computer. The
adclient process communicates with Active Directory to make its host

• • • • • •

Introduction 20

computer part of the Active Directory domain. Applications that require
authentication and authorization or other services then use adclient to
query Active Directory for that information.

In most cases, ADEdit connects directly to Active Directory without using
adclient. However, there are some commands that use adclient to get
information more efficiently than from Active Directory directly.

Centrify command line programs are commands administrators can
run on managed computers to control adclient operations and work
with the Centrify data stored in Active Directory. ADEdit replaces some of
these commands, but occasionally works in conjunction with other
commands such as adflush, especially when executing ADEdit
commands that work through adclient. For more information about
using command line programs, see the Administrator’s Guide for Linux and
UNIX.

Other administrative options

ADEdit is intended to the primary tool for administrators who want to
perform administrative tasks directly from a command line or in scripts on
Linux, UNIX, and Mac OS X computers. However, there are two other
administrative options for performing the same tasks outside of ADEdit:

The Access Manager console runs on a Windows computer and
provides a graphical user interface that you can use for complete control
of Centrify-related information and some Active Directory features.

The Centrify Infrastructure Services SDK for Windows provides
application programming interfaces (API) that you can use to control all
of the same features provided the Access Manager console.

It’s important to realize when using any of these tools that an instance of one
of these tools has no knowledge of other tool instances and acts as if it’s the
only administrative tool at work. For example, if one administrator uses the
Access Manager console to modify a zone object at the same time as another
administrator uses ADEdit to modify the same zone object, their changes
might clash. For example, if the changes are first saved by the administrative
using Access Manager, those change might be overridden by changes saved
by ADEdit. The last tool to save object data has the final say.

• • • • • •

ADEdit Command Reference and Scripting Guide 21

This is true as well for different instances of ADEdit. If two administrators both
use different ADEdit instances simultaneously to work on the same object, the
administrator who last saves the object is the only one whose work will have
an effect on the object.

It’s important when using ADEdit in an environment with multiple
administrators to retrieve an object, make changes, and check it back in
efficiently to avoid conflicts. ADEdit object changes are not atomic.

It helps to bind all administration tools to the same domain controller within a
domain to further minimize conflicts. If tools work on different domain
controllers, one tool’s changes may take time to replicate to the other domain
controllers, so other tools connected to other domain controllers won’t be
able to see those changes immediately.

ADEdit components

ADEdit has two components: the ADEdit application and the ade_lib Tcl
library. They are both installed when the Centrify agent is installed on a Linux,
UNIX, or Mac OS X computer to be managed.

A user can access ADEdit through a CLI in a shell or through an executing Tcl
script or Tcl application. ADEdit’s Tcl interpreter executes the commands it
receives from the CLI using the ADEdit commands and Tcl commands that are
part of ADEdit. It may also use ade_lib Tcl library commands if specified. Tcl
scripts and applications use ADEdit’s commands and ade_lib Tcl library
commands directly. ADEdit binds to an Active Directory domain controller,
with which it exchanges data. ADEdit may also (in a few cases) get data from
Active Directory through the adclient process.

The ADEdit application

ADEdit uses Tcl as its scripting language. Tcl is a long-established extensible
scripting language that offers standard programming features and an
extension named Tk that creates GUIs simply and quickly. Tcl is described in
the authoritative book Tcl and the Tk Toolkit by John K. Ousterhout and Ken
Jones (Addison-Wesley, 2010).

• • • • • •

Introduction 22

ADEdit includes a Tcl interpreter and the Tcl core commands, which allow it to
execute standard Tcl scripts. ADEdit also includes a set of its own commands
designed to manage Centrify and Active Directory information.

ADEdit will execute individual commands in a CLI (in interactive mode) or sets
of commands as an ADEdit script.

The ade_lib Tcl library

The ade_lib Tcl library is a collection of Tcl procedures that provide helper
functions for common Centrify-related management tasks such as listing zone
information for a domain or creating an Active Directory user. You can include
ade_lib in other ADEdit scripts to use its commands.

To use ade_lib in a Tcl script or in an ADEdit session, begin the script or
session with:

package require ade_lib

ADEdit context

When ADEdit commands work on Active Directory objects, they don’t specify a
domain and the object to work on as part of each command. ADEdit instead
maintains a context in memory that defines what commands work on.

ADEdit’s context has two types of components:

A set of one or more bindings that connect ADEdit to domains in
the forest. Each binding uses an authentication to connect to an Active
Directory domain controller. The authentication must have enough
rights to perform ADEdit’s administrative actions on the domain
controller. Each binding binds ADEdit to a single domain; multiple
bindings bind ADEdit to multiple domains at one time.

A set of zero, one, or more selected Active Directory objects that
ADEdit works on. A selected object is typically a Centrify object such as
a zone, zone user, role, or NIS map, but can also be any generic Active
Directory object. ADEdit stores each selected object with all of its
attributes (called fields within ADEdit). ADEdit stores no more than one
type of each selected object: one zone object, for example, one PAM
application object, one generic Active Directory object, and so on.

• • • • • •

ADEdit Command Reference and Scripting Guide 23

An ADEdit session or script typically starts by binding to one or more
domains. If ADEdit isn’t bound to a domain, none of its commands that work
with Active Directory (which is most of them) have any effect. Once bound,
ADEdit commands work within the scope of all currently bound domains.

An ADEdit session or script then typically selects an object to work on: it
specifies an object such as a zone user object that ADEdit retrieves from
Active Directory and stores in memory as part of the context. All subsequent
zone user commands then work on the zone user object in memory, not the
zone user object as it is stored in Active Directory.

When finished with a selected object, the session or script can simply ignore
the object (if nothing has changed in it) or it can save the object back to Active
Directory (if the object has been modified and modifications need to go back
to Active Directory, overwriting the object there). The selected object remains
stored in ADEdit’s context until the session or script selects a new object of
the same type, which replaces the previous object.

By maintaining a context with selected objects, ADEdit avoids constant Active
Directory queries for successive object management commands: A selection
command queries Active Directory to retrieve an object. Reading or modifying
object fields occurs internally and doesn’t require Active Directory queries. If
the object is saved, a final Active Directory query returns the modified object
to Active Directory.

Context persistence

ADEdit’s context persists for the duration of an ADEdit interactive session. The
context in an ADEdit script persists only until the end of the script’s execution.

Pushing and popping contexts

ADEdit can save and retrieve contexts using push and pop commands that use
a stack to store successive levels of context. Pushing and popping contexts is
useful within Tcl scripts when jumping to a procedure. The script can push the
current context to the stack, create an entirely new context for the procedure,
then pop the original context back when exiting the procedure.

• • • • • •

Introduction 24

Context cautions

Working with ADEdit’s context requires some thought. Commands that affect
objects don’t explicitly specify an object, so you must be careful to ensure that
the correct object is specified before executing commands that affect the
object. ADEdit has context reporting commands that help by showing current
domain bindings and selected objects.

It’s important to realize that any modifications to a selected object have no
effect until the object is saved back to Active Directory. If you forget to save an
object, you lose all modifications.

If you keep an object in context a long time between selecting the object and
saving the object, be aware—as noted earlier—that another administration
tool may alter the object in Active Directory during that time and you won’t
know about those alterations.

Logical organization for ADEdit commands

The commands you can execute with ADEdit fall into the following logical
categories:

General-purpose commands that control ADEdit operation and provide
information about ADEdit.

For example, you use these commands to view usage help, set the LDAP
query time-out interval, and quit ADEdit.

Context commands that set up and control the ADEdit domain context.

For example, you use these commands to bind to a domain before
subsequent object management commands, view current bindings, and
change the context.

Object management commands that enable you to perform all of the
same tasks as you can with Active Directory Users and Computers and
Access Manager.

For example, you use these commands to create, select, and manage
zones, users, groups, computers, rights, roles and role Assignments.

Utility commands that perform useful data retrieval and data

• • • • • •

ADEdit Command Reference and Scripting Guide 25

conversion tasks.

For example, you use these commands to convert domain names and
security principal names from one format to another.

Security descriptor commands that modify security descriptors and
make them readable.

For example, you use these commands to convert security descriptors
strings from one format to another.

For more information about the commands each category, see ADEdit
commands organized by type. For details about specific commands, see
ADEdit command reference.

• • • • • •

Introduction 26

Getting started with ADEdit

This chapter describes ADEdit’s basic syntax, shows the typical logic flow used
to handle Centrify objects, and describes in detail the steps in that logic flow
using simple examples.

Starting ADEdit for the first time

The ADEdit application (adedit) and accompanying library of Tcl procedures
(ade_lib) are installed automatically when you install the Centrify agent on a
UNIX, Linux, or Mac OS X computer. Therefore, both the application and the
library are immediately available on any Centrify-managed computer. You are
not required to join the domain before using ADEdit for the first time.

To start a new interactive ADEdit session, type adedit in a standard shell after
logging on to your computer. A new angle bracket (>) prompt indicates that
you are in an interactive ADEdit session. For example:

[myprompt]$ adedit
>

Anyone can launch ADEdit. However, only users who have sufficient privileges
can modify Active Directory objects and Centrify-specific data.

Basic command syntax

ADEdit includes a Tcl interpreter and uses Tcl syntax. However, ADEdit
commands have their own syntax within the Tcl syntax. Like other Tcl
commands, ADEdit commands are always completely lowercase. ADEdit does
not recognize commands with uppercase characters.

• • • • • •

ADEdit Command Reference and Scripting Guide 27

Arguments and options

An ADEdit command works very much like a UNIX command. Depending on
the command, you might be required to specify one or more arguments. An
argument is typically a variable that follows the command name to provide
data that controls the operation to be performed. In some cases, values for
the variables are required for a command to execute. In other cases, variables
might be optional. The reference information for individual commands
indicates whether arguments are required or optional. In most cases,
however, arguments must be entered in the order specified for the command.

In addition to arguments, ADEdit commands may or may not have options.
Options must precede a command’s arguments. Each option is a single word
preceded by a hyphen (-) such as -write. Options can also have their own
arguments. If an option takes an argument, it must immediately follow the
option.

Options are used to control specific operations of ADEdit commands. For
example:

>bind -gc acme.com administrator #3gEgh^&4

In this example, the bind command has an option -gc that specifies a global
catalog domain controller. Three arguments follow the option. The first
argument is required and specifies the domain to which to bind. The second
and third arguments are optional and provide a use name and password to
be used for binding.

Command execution and results

Like most UNIX commands, ADEdit produces no output or return value if a
command executes successfully. Only commands that are defined to return a
result produce output when an operation completes successfully. If a
command fails, however, ADEdit notifies you of an error in execution and
reports the general reason for failure. For example, you might see an error
message indicating the wrong number of arguments or a connection
problem.

Some commands return results as a Tcl list that other commands in a Tcl
script can use. Other commands output results directly to standard output

• • • • • •

Getting started with ADEdit 28

stdout) where the results are displayed in the shell. You can redirect a
command’s stdout output to a file or other destination, if desired.

Commands that return Tcl lists start with get followed by an object type (get_
zone_users, for example) and return the list of the objects matching the
specified object type that are stored in Active Directory. Because other
commands can use the Tcl list to act on the returned data, the get commands
are especially useful for writing scripts.

Commands that send data to stdout start with list followed by an object
type (list_zone_groups, for example) and return the list of the objects
matching the specified object type that are stored in Active Directory for the
currently selected context. Because the list goes to stdout, the list

commands are especially useful for displaying data in interactive sessions as a
script executes.

Using command abbreviations

Most ADEdit commands have an abbreviation that you can use in place of the
full command name. For example, the command list_zone_users has the
abbreviation lszu. You can use either the full command name or the
abbreviation for any command.

Using the command history

ADEdit in an interactive session retains a history of previously entered
commands. You can visit the command history by pressing the up arrow key
to go back in the history and the down arrow key to go forward. Press Enter to
run the current command.

ADEdit retains its command history across sessions, so if you quit ADEdit and
restart it, you can still visit commands entered in the previous session. The
command history has a 50-command capacity. Once full, the history drops old
commands as you enter new commands.

• • • • • •

ADEdit Command Reference and Scripting Guide 29

Using the help command

The ADEdit help command provides brief information about ADEdit
commands. If you enter help in ADEdit followed by a command or command
abbreviation, help returns information about that command, including its
syntax.

You can use the wildcard character * to specifying any number of variable
characters or ? to specify a single variable character within a command string
following the help command. The help command returns help text for all
commands that match the wildcard string. For example, the following
command returns help for all commands that start with get.

> help get*

Learning to use ADEdit

You can use ADEdit interactively to run individual commands or to execute
scripts directly. You can use ADEdit commands in scripts that you convert into
executable files that can be execute outside of ADEdit sessions. Because
scripts can automate and simplify many administrative tasks, it is important
for you to know how to combine ADEdit commands in the proper sequence to
get the results you are looking for.

Before you begin writing scripts that use ADEdit commands, you should be
familiar with the most common logical flow for managing Centrify-specific and
Active Directory objects.

The following illustration provides an overview of the logical process.

• • • • • •

Getting started with ADEdit 30

As illustrated, the typical logic flow in a ADEdit script follows these steps:

1. Bind ADEdit to one or more domains within a forest.

The domains to which you bind will define the logical boundaries within
which all subsequent commands work.

2. Select an existing Active Directory object or create a new object with
which to work.

You can use select commands to retrieve existing object from Active
Directory and store them in memory. You can use new commands to
create new objects of a specified type and store them in the ADEdit
context as the currently selected object.

• • • • • •

ADEdit Command Reference and Scripting Guide 31

There are also create commands that create a new objects in Active
Directory without putting the object in the ADEdit context. You must
explicitly select objects that are created with create commands.

3. Get or set values for a selected object.

After you select an object to work with and it is stored in memory—that
is, the object is in the ADEdit context—you can read field values to see
their current settings or write field values to change their current state.

4. Save the selected object and any settings you changed.

If you modify an object in memory or you have created a new object in
memory, you must save it back to Active Directory for your changes to
have any effect.

As these steps suggest, ADEdit is very context-oriented. The bindings you set
and the objects you select determine the ADEdit current context. All
commands work within that context. If you select a zone, for example,
subsequent commands use the selected zone as the context in which to add
new zone users, zone computers, and zone groups.

Outside of scripts that perform the most common administrative tasks, you
might use ADEdit commands differently and without following these steps. For
example, you might use ADEdit to convert data from one format to another,
view help, or get information about the local computer without following the
typical logic flow, but those tasks would be exceptions to the general rule.

Binding to a domain and domain controller

ADEdit must bind to one or more domains before any ADEdit commands that
affect Active Directory objects will work. When you execute the bind

command, you specify the domain to which to bind. You can also specify a
user name and password for the bind operation to provide authentication.

The domain can be any domain in the current forest. The ADEdit host
computer does not have to be joined to a domain to bind to and work with a
domain. A binding command can be as simple as:

>bind acme.com

If you specify a domain with no options, ADEdit automatically finds the
domain’s closest, fastest domain controller. Options can narrow down the

• • • • • •

Getting started with ADEdit 32

choice of domain controllers. The -write option, for example, specifies that
you want ADEdit to choose a writable domain controller. The -gc option
specifies that ADEdit use the global catalog (GC) domain controller. You can
use both options to choose a writable GC domain controller, for example:

>bind -write -gc acme.com

Alternatively, you can name a specific domain controller as a part of the
domain name:

>bind dcserv1@acme.com

Active Directory is a multi-master LDAP system. Changes made at any
one domain controller eventually propagate to all other domain
controllers in the domain (if they’re universal changes). If any
administration tools—such as Active Directory Users and Computers,
Access Manager, or other instances of ADEdit—bind to the same
domain controller, changes made by any one of the tools are
immediately available to the other tools without waiting for
propagation.

Authentication

If no credentials are provided with a bind command, ADEdit gets its
authentication data from the Kerberos credentials cache if one exists.
Alternatively, you can provide a user name or both a user name and
password. For example:

>bind acme.com administrator {e$t86&CG}

Notice that the password is enclosed in braces ({}) to ensure that Tcl handles
it correctly. Without the braces, Tcl syntax will automatically substitute for
some characters such as the $ used in the password. For example, a dollar
sign specifies the contents of a variable in Tcl. Enclosing a string in braces
guarantees that Tcl will not try to substitute for any of the characters in the
string. Tcl drops the braces when it passes the string on.

You can also use the credentials of the ADEdit’s host computer by using the -

machine option:

>bind -machine acme.com

Whatever credentials you use, they must be for an account on the
Active Directory domain controller with enough authority to read from

• • • • • •

ADEdit Command Reference and Scripting Guide 33

and make changes to Active Directory objects in the domain. Without
the proper authority, ADEdit commands that use Active Directory
won’t work.

Binding scope and persistence

Binding to a single domain allows ADEdit commands to work on Active
Directory in that domain. You can bind to multiple domains to allow ADEdit
commands to work on more than one domain. To bind to multiple domains,
you simply use multiple bind commands, one for each domain.

Once bound to a domain, ADEdit remains bound to that domain until another
binding occurs to the same domain (possibly using a different authentication
or specifying a different domain controller) or until the current interactive
session or executing script ends. Binding might also end if the current context
is popped and ADEdit reverts to an earlier context without the binding.

Binding and join differences

The ADEdit bind operation is not the same as having the ADEdit host
computer join an Active Directory domain. A join is the adclient connection
to Active Directory for the host computer. A computer is only allowed to join
one domain. A bind is an ADEdit connection to Active Directory, and it can be
to more than one domain in the forest. The binding is completely
independent of the host computer’s joined domain.

A few ADEdit commands that start with joined_* use adclient to
retrieve data from Active Directory. Those commands are affected by
the host computers’s joined domain because they require adclient to
be connected to Active Directory and can only get data from the joined
domain.

Controlling binding operation

You can control the way ADEdit’s binding to Active Directory operates. The
set_ldap_timeout command sets a time interval for ADEdit’s LDAP queries to
execute by Active Directory. ADEdit considers a query that doesn’t execute by
the time-out interval as failed.

• • • • • •

Getting started with ADEdit 34

Selecting an object

ADEdit manages Centrify information by working with the objects in Active
Directory.The Centrify-specific object types are:

Zones

Zone users

Zone computers

Zone groups

Roles

Role assignments

Privileged UNIX command rights

PAM application rights

NIS maps

However, you are not limited to using ADEdit only for managing Centrify-
specific object types. You can also use ADEdit commands to work with generic
Active Directory objects, including computers, users, groups, and other
classes.

Selection commands

The ADEdit object select commands have the form select_xxx where xxx is
an object type. When you select an object (select_zone, for example), ADEdit
looks for the object specified in Active Directory and retrieves it to store the
object in the current context.

Each select command is tailored to the type of object it retrieves. As an
example, after binding to acme.com, you can use a get_zones command to list
the zones in the bound domain, then use a select_zone command to select
the zone you want to work with:

>get_zones acme.com
{CN=default,CN=Zones,CN=Centrify,CN=Program
Data,DC=acme,DC=com}
{CN=cz1,CN=Zones,CN=Centrify,CN=Program
Data,DC=acme,DC=com}
{CN=cz2,CN=Zones,CN=Centrify,CN=Program

• • • • • •

ADEdit Command Reference and Scripting Guide 35

Data,DC=acme,DC=com}
{CN=global,CN=Zones,CN=Centrify,CN=Program
Data,DC=acme,DC=com}
>select_zone {CN=global,CN=Zones,CN=Centrify,CN=Program
Data,DC=acme,DC=com}

As this example illustrates, each zone is list by its distinguished name (DN) and
you use the distinguished name to identify the zone you want to use.

Selection as part of context

Once an object is selected, it resides in memory (context) with all attendant
field values. Further ADEdit commands can examine and modify the object in
context.

ADEdit keeps only one selected object of each type in context at a time. If you
select or create another object of the same type, the new object replaces the
old object in memory without saving the old object to Active Directory. ADEdit
can and does keep multiple objects in context, but each object must be a
different type.

A currently selected object often affects work on other objects types,
especially the currently selected zone. For example, if you select a zone
user, you must first select a zone so that ADEdit knows in which zone
to look for the zone user. If you don’t first select a zone, you can’t select
and work on various zone objects such as zone users, zone computers,
and zone groups. Knowing your context as you work on objects is
important.

Persistence

A selected object stays selected until another object of the same type replaces
it or until the current interactive session ends or executing script ends. When
an ADEdit session ends, all selected objects are removed from ADEdit’s
memory. In most cases, you must explicitly save changes to objects in
memory to ensure the changes are stored in Active Directory.

• • • • • •

Getting started with ADEdit 36

Creating a new object

You can use ADEdit new_xxx commands, where xxx is the object type, to
create new objects to work on instead of selecting existing objects. When you
use new_xxx commands, commands, ADEdit creates an object of the specified
type and stores the object as the currently selected object of that type in
ADEdit’s current context.

In most cases, ADEdit does not provide default values for a new object’s fields.
If you create a new object, its fields are empty. You can use the ADEdit set_
xxx commands to set values for the fields that are specific to each object type.

Here are some notes about creating objects in ADEdit:

Creating a new zone works differently than all other object types: ADEdit
does not create a new zone in memory. ADEdit creates new zones
directly in Active Directory and fills in zone fields with default values.
After you create a zone, you must then select it to examine and modify it.

ADEdit cannot create AIX extended attributes in a Microsoft Services for
UNIX (SFU) zone (Ref: CS-25392c).

Some non-alphanumeric characters are valid for Windows user or group
names and are converted to underscore ("_") when changed to be UNIX
names in the Access Manager, but cannot be used in adedit. (Ref: IN-
90001) The following characters cannot be used in adedit: \ () + ; " , < > =

Examining objects and context

The ADEdit context is a combination of current bindings and currently
selected objects. You can examine the properties of currently selected objects
using ADEdit get_xxx or list_xxx commands, where xxx is an object type.
For example, you can use the get_roles or list_roles command to see a list of
roles in the current zone.

Getting field values for objects

You can also use get_xxx_field commands to retrieve field values for
different types of objects. For example:

>select_zone_user adam.avery@acme.com

• • • • • •

ADEdit Command Reference and Scripting Guide 37

>get_zone_user_field uname

adam

In this example, ADEdit retrieves the value of the field uname—in this case, the
UNIX user name field—for the currently selected zone user
adam.avery@acme.com.

Getting current context information

You can examine ADEdit’s current context at any time using two different
commands: the show command and the get_bind_info command.

The show command returns all bindings and selected objects in the current
context. For example:

>show
Bindings:

acme.com: calla.acme.com
Current zone:

CN=global,CN=Zones,CN=Centrify,CN=Program
Data,DC=acme,DC=com
Current nss user:

adam.avery@acme.com:adam:10001:10001:%
{u:samaccountname}:%{home}/%{user}:%{shell}:

You can use optional arguments to limit the information the show command
returns.

The get_bind_info command returns information about a bound domain.
When you use this command, you specify the information you want to
retrieve, such as the domain’s forest, the name of the current domain
controller, the domain’s security identifier (SID), the functional level of the
domain, or the functional level of the domain’s forest. For example:

>get_bind_info acme.com server

adserve02.acme.com

In this case, ADEdit returns the name of the bound server for the domain
acme.com.

• • • • • •

Getting started with ADEdit 38

Modifying or deleting selected objects

Once an object is selected and residing in the ADEdit context, you can modify
its fields using the ADEdit set_xxx_field commands, where xxx is the object
type. These commands allow you to specify a field name and a field value. For
example:

>select_zone_user adam.avery@acme.com

>set_zone_user_field uname buzz

This example selects the zone user adam.avery@acme.com and sets the uname

field for the zone user—the UNIX user name—to buzz. The field is set to the
new value only in memory., however. You must save the object before the new
field value is stored in Active Directory and takes effect within the object’s
domain. For example:

>save_zone_user

Deleting an object

You can delete a currently selected object using the ADEdit delete_xxx
commands, where xxx is the object type. When you delete an object, it is
deleted from both memory and Active Directory. For example:

>select_zone_user adam.avery@acme.com

>delete_zone_user

This example deletes the currently selected zone user, adam.avery@acme.com,
from the he ADEdit context so there’s no longer a selected zone user. The
command also deletes the zone user object associated with the user
adam.avery@acme.com so there’s no longer a zone user by that name in Active
Directory.

There is no undo for a delete command. Once the object is deleted
from Active Directory, you must recreate it if you want it back. Be
especially careful if you set up an ADEdit script to delete multiple
objects.

• • • • • •

ADEdit Command Reference and Scripting Guide 39

Saving selected objects

Any new or modified object in ADEdit’s context has no effect until you save the
object back to Active Directory. You do so using a save_xxx command where
xxx is the object type. For example:

>save_zone

This example saves the currently selected zone object back to Active Directory
along with any field values that have been modified since the zone was
selected.

Saving an object does not deselect the object. It remains the selected object in
memory so that you can further read and modify it.

Pushing and popping context

There are times when you may want to save ADEdit’s current context, change
it to a new context to work on different objects in different domains, and then
revert back to the original context. This is particularly true when writing Tcl
scripts with subroutines, where you may want to feel free to complete a
completely new context without altering the context of the calling code.

ADEdit offers a push and a pop command to save and retrieve contexts to a
stack maintained in memory. push saves the complete current context—all of
its bindings and selected objects—to the stack. Subsequent push commands
save more contexts to the top of the stack, pushing the older contexts further
down the stack, allowing for nested subroutines.

pop reads the context from the top of the stack and restores it to memory as
the current context. pop also removes the restored context from the stack.
Subsequent pop commands pop more contexts off the stack until the stack is
empty, at which point pop returns an error.

Creating ADEdit scripts

You can combine ADEdit commands into scripts that perform many common
administrative tasks, such as creating new zones, adding users to zones, or
pre-creating computer accounts. After you create a script, you can execute it

• • • • • •

Getting started with ADEdit 40

from a shell that calls adedit or convert it to an executable file that can run
directly from the command line.

Starting with a simple script

If you are new to scripting, Tcl, or both, you might want to experiment first
with a few simple commands before trying to develop scripts that perform
administrative tasks. The steps in this section are intended to help you get
started.

If you are already familiar with scripting languages or with using Tcl, you might
want to skip ahead to the discussion of the sample scripts or directly to the
command reference.

To write a simple ADEdit script:

1. Open a new file—for example, my_adedit_script—in a text editor.

2. Type the following line to set up the adedit environment and include the
ADedit Tcl library:

#!/bin/env adedit
package require ade_lib

If your version of Linux or UNIX has the env command in a location other
than the /bin directory, modify the first line to specify that directory. For
example, another common location for the env command is /usr/bin. In
this case, you would type:

#!/usr/bin/env adedit

3. Type an appropriate bind command to identify the Active Directory
domain or domains to use.

bind pistolas.org maya.garcia {$m1l3s88}

Depending on whether you are going to run this script interactively or as
an executable file, you might include or exclude authentication
information.

4. Type the appropriate commands to create and select a new zone.

create_zone tree
“cn=sample,cn=zones,ou=centrify,dc=acme,dc=com” std

• • • • • •

ADEdit Command Reference and Scripting Guide 41

select_zone
“cn=sample,cn=zones,ou=centrify,dc=acme,dc=com”

5. Type the command to list the current zones to stdout to verify the new
zone.

list_zones pistolas.org

6. Type the command to save the zone and quit.

save_zone
quit

7. Save the text file and execute it using ADEdit or as an executable file.

After you have tested the basic script, you edit it to create new zones,
make a zone a child zone, add new zone computers, groups, or users. for
example, you might add lines similar to these:

new_zone_user AD_user_UPN
set_zone_user_field field value
save_zone_user
list_zone_users

If your sample script creates and selects a zone successfully, you should
delete or rename the zone each time you iterate through the execution.

The following is a sample of what the simple script might look like:

#! /bin/env adeditpackage require ade_lib
bind pistolas.org maya.garcia {$m1l3s88}
create_zone tree
"cn=test6,cn=zones,ou=centrify,dc=pistolas,dc=org" std
select_zone
"cn=test6,cn=zones,ou=centrify,dc=pistolas,dc=org"
set_zone_field parent "cn=US-
HQ,cn=zones,ou=centrify,dc=pistolas,dc=org"
list_zones pistolas.org
save_zone
new_zone_user tim@pistolas.org
set_zone_user_field uname tim
set_zone_user_field uid 81000
set_zone_user_field gid 81000
set_zone_user_field gecos "Tim Jackson, Accounting"
save_zone_user
list_zone_users
quit

• • • • • •

Getting started with ADEdit 42

Executing an ADEdit script using ADEdit

You can execute ADEdit script by invoking ADEdit on the command line or by
making the script an executable file and invoking the script itself directly from
the command line.

To execute an ADEdit script by invoking ADEdit on the
command line:

1. Open a shell.

2. Type adedit followed by the name of the script

For example, if the name of the script is my_adedit_scipt and it is the
current working directory, type:

adedit my_adedit_script

If the script isn’t in the current working directory, specify the path to the
script and any arguments if the script requires any.

Running an ADEdit script as an executable from the command line

You can run an ADEdit script without invoking ADEdit first by making the script
an executable file.

To run an ADEdit script as a UNIX-executable file:

1. Verify the script begins with the following lines:

#!/bin/env adedit
package require ade_lib

The script reads it as a comment, however UNIX or Linux will use it to
find and execute ADEdit and then execute the rest of the script.

2. Use chmod to make the file executable.

For example, if the name of the script is my_adedit_scipt and it is the
current working directory, type:

chmod +x my_adedit_script

• • • • • •

ADEdit Command Reference and Scripting Guide 43

3. Make sure the file’s directory is listed in your PATH environment variable
if you want to be able to execute the file from any directory.

Alternatively, modify the script to include the full path to adedit. For
example:

#!/bin/env /usr/bin/adedit

Once set up this way, you can simply enter the script’s file name in a shell
and have the script execute as a command.

/my_adedit_script

Running an ADEdit script as a shell script

You can also run the script as a shell script. In this case, the script file would
have the .sh suffix and would contain the following lines at the beginning of
the file:

#!/bin/sh
\
exec adedit "$0" ${1+"$@"}
package require ade_lib

• • • • • •

Getting started with ADEdit 44

ADEdit commands organized
by type

As discussed in Logical organization for ADEdit commands, there are different
types of ADEdit commands that can be organized into logical categories. This
chapter provides a brief introduction to the ADEdit commands in each of
those logical categories. For detailed information about individual commands,
see ADEdit command reference.

General-purpose commands

You can use the following general-purpose commands to control overall
ADEdit operation or return general information about ADEdit or its host
computer.

Command Description
help Returns information about a specified ADEdit command or all ADEdit

commands.

get_adinfo Returns information about the joined domain, the joined zone, or the
name the local computer is joined under.

quit Quits ADEdit.

set_ldap_
timeout

Sets the time-out value used by ADEdit’s LDAP commands that
perform read and write operations on Active Directory through a
binding.

• • • • • •

ADEdit Command Reference and Scripting Guide 45

Context commands

You can use the following context commands set the current domain
bindings, report on the current bindings and selected object, and save and
retrieve the ADEdit context (which includes both bindings and currently
selected objects).

Command Description
bind Binds to one or more Active Directory domains to define the ADEdit

context for subsequent commands.

get_bind_
info

Returns information about the domains to which ADEdit is bound.

pop Restores the context from the top of the ADEdit context stack.

push Saves the current context to the ADEdit context stack.

show Displays the current context of ADEdit, including its bound domains
and currently selected objects.

validate_
license

Determines whether there is a valid license and stores an indicator in
the ADEdit context.

Object-management commands

You can use object-management command to retrieve, modify, create, and
delete Active Directory objects of any kind, including Centrify-specific objects
such as zones, rights, and roles. The command set for each object type is
similar to the command sets for the other object types.

Zone object management commands

You can use the following zone object management commands to create,
select, save, and delete zones and manage zone properties.

Command Description
create_zone Creates a new zone in Active Directory.

delegate_
zone_right

Delegates a zone administrative task to a specified user or group.

• • • • • •

ADEdit commands organized by type 46

Command Description
delete_zone Deletes the selected zone from Active Directory and memory.

get_child_
zones

Returns a Tcl list of child zones, computer roles, or computer-specific
zones associated with the current zone.

get_zone_
field

Returns the value for a specified field from the currently selected
zone.

get_zone_
nss_vars

Returns the NSS substitution variable for the selected zone.

get_zones Returns a Tcl list of all zones within a specified domain.

save_zone Saves the selected zone with its current settings to Active Directory.

select_zone Retrieves a zone from Active Directory and stores it in memory as the
currently selected zone.

set_zone_
field

Sets the value for a specified field in the currently selected zone.

Zone user object management commands

You can use the following zone user commands to create, select, save, and
delete zone user objects and manage user properties in the currently selected
zone.

Command Description
delete_
local_user_
profile

Deletes a local user (that is not an Active Directory user) that has a
profile defined in the current zone.

delete_
zone_user

Deletes the zone user from Active Directory and from memory.

get_local_
user_
profile_field

Returns the value of a profile field for the currently selected local user
(that is not an Active Directory user) that has a profile defined in the
current zone.

get_local_
users_
profile

Returns a Tcl list of profiles for local users (that are not Active
Directory users) that are defined in the currently selected zone.

get_zone_
user_field

Returns the value for a specified field from the currently selected zone
user.

get_zone_ Returns a Tcl list of the Active Directory names of zone users in the

• • • • • •

ADEdit Command Reference and Scripting Guide 47

Command Description
users current zone.

list_local_
users_
profile

Returns a list of local users (that are not Active Directory users) that
have a profile defined in the current zone.

list_zone_
users

Lists all zone users with NSS data for each user in stdout.

new_local_
user_profile

Creates an object for a local user (that is not an Active Directory user)
in the currently selected zone.

new_zone_
user

Creates a new zone user and stores it in memory as the currently
selected zone user.

save_local_
user_profile

Saves the object for the currently selected local user (that is not an
Active Directory user) after you create the local user object or edit
profile field values for the local user object.

save_zone_
user

Saves the selected zone user with its current settings to Active
Directory.

select_local_
user_profile

Selects a local user (that is not an Active Directory user) object for
viewing or editing.

select_
zone_user

Retrieves a zone user from Active Directory and stores it in memory as
the selected zone user.

set_local_
user_
profile_field

Sets the value of a field for the currently selected local user (that is not
an Active Directory user) that has a profile defined in the current zone.

set_zone_
user_field

Sets the value for a specified field in the currently selected zone user.

Zone group object management commands

You can use the following zone group commands to create, select, save, and
delete zone group objects and manage group properties in the currently
selected zone.

Command Description
delete_
local_
group_
profile

Deletes a local group (that is not an Active Directory group) that has a
profile defined in the current zone.

• • • • • •

ADEdit commands organized by type 48

Command Description
delete_
zone_group

Deletes the zone group from Active Directory and from memory.

get_local_
group_
profile_field

Returns the value of a profile field for the currently selected local
group (that is not an Active Directory group) that has a profile defined
in the current zone.

get_local_
groups_
profile

Returns a Tcl list of profiles for local groups (that are not Active
Directory groups) that are defined in the currently selected zone.

get_zone_
group_field

Returns the value for a specified field from the currently selected zone
group.

get_zone_
groups

Return a Tcl list of Active Directory names of all zone groups in the
current zone.

list_local_
groups_
profile

Returns a list of local groups (that are not Active Directory groups) that
have a profile defined in the current zone.

list_zone_
groups

Lists all zone groups with object data for each group in stdout.

new_local_
group_
profile

Creates an object for a local group (that is not an Active Directory
group) in the currently selected zone.

new_zone_
group

Creates a new zone group and stores it in memory as the currently
selected zone group.

save_local_
group_
profile

Saves the object for the currently selected local group (that is not an
Active Directory group) after you create the local group object or edit
profile field values for the local group object.

save_zone_
group

Saves the selected zone group with its current settings to Active
Directory.

select_local_
group_
profile

Selects a local group (that is not an Active Directory group) object for
viewing or editing.

select_
zone_group

Retrieves a zone group from Active Directory and stores it in memory
as the selected zone group.

set_local_
group_
profile_field

Sets the value of a field for the currently selected local group (that is
not an Active Directory group) that has a profile defined in the current
zone.

set_zone_
group_field

Sets the value for a specified field in the currently selected zone
group.

• • • • • •

ADEdit Command Reference and Scripting Guide 49

Zone computer object management commands

You can use the following zone computer commands to create, select, save,
and delete zone group objects and manage computer properties in the
currently selected zone.

Command Description
delete_zone_
computer

Deletes the zone computer from Active Directory and from
memory.

get_zone_
computer_field

Returns the value for a specified field from the currently selected
zone computer.

get_zone_
computers

Returns a Tcl list of Active Directory names of all zone computers
in the current zone.

list_zone_
computers

Lists all zone computers along with object data for each computer
in stdout.

new_zone_
computer

Creates a new zone computer and stores it in memory as the
currently selected zone computer.

save_zone_
computer

Saves the selected zone computer with its current settings to Active
Directory.

select_zone_
computer

Retrieves a zone computer from Active Directory and stores it in
memory as the selected zone computer.

set_zone_
computer_field

Sets the value for a specified field in the currently selected zone
computer.

Computer role object management commands

You can use the following computer role commands to create, select, save,
and delete computer role objects and manage computer role properties in
the currently selected zone.

Command Description
create_
computer_
role

Creates a new computer role in Active Directory.

delete_zone Deletes the selected computer role from Active Directory and
memory.

get_role_ Returns a Tcl list of user role assignments associated with the selected

• • • • • •

ADEdit commands organized by type 50

Command Description
assignments computer role.

get_zone_
field

Retrieves the computer group associated with the computer role.

list_role_
assignments

Lists user role assignments associated with the selected computer
role.

new_role_
assignment

Creates a new role assignment and associates it with the selected
computer role.

save_zone Saves the selected computer role with its current settings to Active
Directory.

select_zone Retrieves a computer role from Active Directory and stores it in
memory as the selected zone for subsequent commands.

set_zone_
field

Sets the computer group which is associated with the computer role.

Role object management commands

You can use the following role object commands to create, select, save, and
delete role objects and manage role properties in the currently selected zone.

Command Description
add_command_
to_role

Adds a privileged command to the currently selected role.

add_pamapp_to_
role

Adds a PAM application right to the currently selected role.

delete_role Deletes the selected role from Active Directory and from
memory.

get_role_apps Returns a Tcl list of the PAM applications associated with the
currently selected role.

get_role_
commands

Returns a Tcl list of the privileged commands associated with the
currently selected role.

get_role_field Returns the value for a specified field from the currently selected
role.

get_roles Returns a Tcl list of roles in the current zone.

list_role_rights List all privileged commands and PAM applications associated
with the currently selected role in stdout.

• • • • • •

ADEdit Command Reference and Scripting Guide 51

Command Description
list_roles Lists all roles in the currently selected zone along with object

data for each role in stdout.

new_role Creates a new role and stores it in memory as the currently
selected role.

remove_
command_from_
role

Removes a privileged command from the currently selected role.

remove_pamapp_
from_role

Removes a PAM application from the currently selected role.

save_role Saves the selected role with its current settings to Active
Directory.

select_role Retrieves a role from Active Directory and stores it in memory as
the selected role.

set_role_field Sets the value for a specified field in the currently selected role.

Role assignment object management commands

You can use the following role assignment object commands to create, select,
save, and delete role assignment objects and manage role assignment
properties in the currently selected zone.

Command Description
delete_role_
assignment

Deletes the selected role assignment from Active Directory and
from memory.

get_role_
assignment_
field

Returns the value for a specified field from the currently selected
role assignment.

get_role_
assignments

Returns a Tcl list of role assignments in the current zone.

list_role_
assignments

Lists all role assignments along with object data for each role
assignment in stdout.

new_role_
assignment

Creates a new role assignment and stores it in memory as the
currently selected role assignment.

save_role_
assignment

Saves the selected role assignment with its current settings to
Active Directory.

• • • • • •

ADEdit commands organized by type 52

Command Description
select_role_
assignment

Retrieves a role assignment from Active Directory and stores it in
memory as the selected role assignment.

set_role_
assignment_
field

Sets the value for a specified field in the currently selected role
assignment.

PAM application object management commands

You can use the following PAM application commands to create, select, save,
and delete PAM application objects and manage PAM application properties in
the currently selected zone.

Command Description
delete_
pam_app

Deletes the selected PAM application from Active Directory and from
memory.

get_pam_
apps

Returns a Tcl list of PAM applications in the current zone.

get_pam_
field

Returns the value for a specified field from the currently selected PAM
application.

list_pam_
apps

List all PAM applications along with object data for each PAM
application in stdout.

new_pam_
app

Creates a new PAM application and stores it in memory as the
currently selected PAM application.

save_pam_
app

Saves the selected PAM application with its current settings to Active
Directory.

select_pam_
app

Retrieves a PAM application from Active Directory and stores it in
memory as the selected PAM application.

set_pam_
field

Sets the value for a specified field in the currently selected PAM
application.

Command (dz) object management commands

You can use the following privileged authorization commands to create,
select, save, and delete privileged UNIX command and manage command
properties in the currently selected zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 53

Command Description
delete_dz_
command

Deletes the selected command from Active Directory and from
memory.

get_dz_
commands

Return a Tcl list of commands in the current zone.

get_dzc_field Returns the value for a specified field from the currently selected
command.

list_dz_
commands

List all privileged commands along with object data for each
command in stdout.

new_dz_
command

Creates a new command and stores it in memory as the currently
selected command.

save_dz_
command

Saves the selected command with its current settings to Active
Directory.

select_dz_
command

Retrieve a privileged command from Active Directory and stores it in
memory as the selected command.

set_dzc_field Sets the value for a specified field in the currently selected command.

NIS map object management commands

You can use the following NIS map commands to create, select, save, and
delete NIS maps and manage NIS map entries and properties in the currently
selected zone.

Command Description
add_map_entry Adds an entry to the currently selected NIS map.

add_map_entry_
with_comment

Adds an entry with comments to the currently selected NIS
map.

delete_map_entry Removes an entry from the currently selected NIS map.

delete_nis_map Deletes the selected NIS map from Active Directory and from
memory.

get_nis_map Returns a Tcl list of the entries in the currently selected NIS
map.

get_nis_map_field Returns the value for a specified field from the currently
selected NIS map.

get_nis_map_with_
comment

Returns a Tcl list of the entries with their comments in the
currently selected NIS map.

• • • • • •

ADEdit commands organized by type 54

Command Description
get_nis_maps Returns a Tcl list of NIS maps in the current zone.

list_nis_map Lists the NIS map entries from the currently selected NIS map
in stdout.

list_nis_map_with_
comment

Lists the NIS map entries and comments from the currently
selected NIS map in stdout.

list_nis_maps List all NIS maps in the currently selected zone in stdout.

new_nis_map Creates a new NIS map and stores it in memory as the
currently selected NIS map.

save_nis_map Saves the selected NIS map with its current entries to Active
Directory.

select_nis_map Retrieves a NIS map from Active Directory and stores it in
memory as the selected NIS map.

Active Directory object management commands

You can use the following Active Directory commands to create, select, save,
and delete NIS maps and manage NIS map entries and properties in the
currently selected zone.

Command Description
add_object_
value

Adds a value to a multi-valued field attribute of the currently selected
Active Directory object.

delete_
object

Deletes the selected Active Directory object from Active Directory and
from memory.

delete_sub_
tree

Deletes an Active Directory object and all of its children.

get_object_
field

Returns the value for a specified field from the currently selected
Active Directory object.

get_object_
field_names

Returns a Tcl list of the field names for each of the fields attributes
associated the currently selected Active Directory object.

get_objects Performs an LDAP search of Active Directory and returns a Tcl list of
the distinguished names of matching objects.

new_object Creates a new Active Directory object and stores it in memory as the
currently selected Active Directory object.

remove_ Removes a value from a multi-valued field attribute of the currently

• • • • • •

ADEdit Command Reference and Scripting Guide 55

Command Description
object_value selected Active Directory object.

save_object Saves the selected Active Directory object with its current settings to
Active Directory.

select_
object

Retrieves an object with its attributes from Active Directory and stores
it in memory as the selected Active Directory object.

set_object_
field

Sets the value for a specified field in the currently selected Active
Directory object.

Utility commands

You can use the following utility commands retrieve and convert data from
format to format, manipulate distinguished names, and manage group
membership and user passwords.

Command Description
dn_from_
domain

Converts a domain’s dotted name to a distinguished name (DN)
format.

dn_to_
principal

Searches Active Directory for a DN and, if found, returns the
corresponding UPN.

domain_
from_dn

Converts a domain’s distinguished name (DN) to a dotted name
format.

get_group_
members

Returns a Tcl list of members in a group.

get_parent_dn Returns the parent of an LDAP path (a distinguished name): it
removes the first element of the DN and returns the rest.

get_pwnam Searches the etc/passwd file for a UNIX user name and, if found,
returns a Tcl list of the passwd profile values associated with the
user.

get_rdn Returns the relative DN of an LDAP path: it returns only the first
element of the supplied DN.

get_schema_
guid

finds a class or attribute in Active Directory and returns its globally
unique identifier (GUID)

getent_
passwd

Returns a Tcl list of all entries in the local /etc/passwd file.

joined_get_ Uses adclient to query Active Directory and returns a Tcl list of

• • • • • •

ADEdit commands organized by type 56

Command Description
user_
membership

groups that a user belongs to.

joined_name_
to_principal

Uses adclient to search for a UNIX name and return the security
principal associated with that UNIX name.

joined_user_
in_group

Uses adclient to check Active Directory to see if a user is in a group.

move_object Moves the selected object to the specified location.

principal_
from_sid

Searches Active Directory for an SID and returns the security
principal associated with the SID.

principal_to_
dn

Searches Active Directory for a user principal name (UPN) and, if
found, returns the corresponding DN.

rename_
object

Renames the selected object.

set_user_
password

Sets an Active Directory user’s password.

sid_to_
escaped_
string

Converts an Active Directory security identifier (SID) to an escaped
string.

sid_to_uid Converts an Active Directory SID to a user ID (UID).

Security descriptor commands

You can use the following security descriptor commands modify SDs and
make them readable by humans.

Command Description
add_sd_ace Adds an access control entry to a security descriptor.

explain_sd Converts a security description in SDDL format to a human-readable
form.

remove_sd_
ace

Removes an access control entry (ACE) from a security descriptor.

set_sd_owner Sets the owner of a security descriptor.

• • • • • •

ADEdit Command Reference and Scripting Guide 57

Using the demonstration
scripts

This chapter describes the ADEdit sample scripts provided in the package. The
scripts are listed in the following table. The corresponding source files are in
the /usr/share/centrifydc/samples/adedit directory. The source file name
is shown in the table and each script header.

You have a couple of different ways to invoke scripts from the command line
(see Creating ADEdit scripts). The sample scripts demonstrate two of them.

Section
heading

Purpose Source file name

Reading
command
line input

These scripts illustrate two different methods
for using the Tcl argv, argc, and argv0

variables.

MktDept.sh

getopt-example

Create a
parent zone

This script illustrates how to create a Centrify
parent zone.

CreateParentZone

Create child
zones

This script illustrates how to create two child
zones in a parent zone.

CreateChildZones

Create
privileged
commands
and roles

These scripts illustrate how to create new
privileged commands and new roles that
include those commands.

MakeRole

ApacheAdminRole

Add and
provision
UNIX users

This script and input file illustrate how to add
users to Active Directory and copy them to the
Active Directory UNIX Users group.

If you have the Zone Provision Agent configured
and running, you can use this script or one
similar to it to automatically provision user
profiles when users are added to Active

AddUnixUsers

users.txt

• • • • • •

ADEdit Command Reference and Scripting Guide 58

Section
heading

Purpose Source file name

Directory.

Simple
tools

These scripts demonstrate how you can list the
computers in a zone, extract field attributes
from user objects, and list the users in a zone.

computers-report

useracc-report

user-report

GetComputers

Run a script
from a
script

These scripts illustrate how you can call a script
(setenv) from within another script to perform
different queries based on the values entered.

setenv

GetChildZones

GetGroups

GetUsers

GetZones

Zone containers and nodes

Many ADEdit commands require you to specify the zone container. This
container is the root container used by Centrify to store the zone information
for the users, groups, computers and child zones. This container can have any
name and can be anywhere in Active Directory. This container can also be an
organizational unit.

Before you proceed, you need to know the location of the zone containers in
Active Directory and the distinguished names you use to specify the zone
container and its objects.

This section illustrates some sample cases with different locations for the
zone container and the distinguished name for commonly used variables in
the scripts.

In this example, the installer defined a base organizational unit called
Centrify. This architecture is often used because it puts all the UNIX-related
information in a single branch. The container with the zone information is
called Zones.

• • • • • •

Using the demonstration scripts 59

In addition to the Zones container location, the installation script requires the
installer to specify a location for a container to store the Centrify software
licenses. In this figure, the node—Licenses—is in the base organizational unit.
However, it does not need to be there.

In this figure, the installer also created another organizational unit called UNIX

Groups for the Active Directory groups used for the UNIX users. Keeping all of
the groups recreated for the UNIX users in a single node simplifies managing
them and the privileges assigned to each user. (With few exceptions, the UNIX
users get their rights from the role assigned to the group in which they are a
member.) Often, more organizational units are created for managing different
classes of UNIX user and UNIX services.

There are two zones in this figure: the parent zone HQ and a child zone named
Alpha. Each zone contains nodes labeled Computers, Groups, Users, and
Authorization. When you specify a zone, computer, user, or group in an
ADEdit command you must use the distinguished name. The following table
illustrates the distinguished names.

• • • • • •

ADEdit Command Reference and Scripting Guide 60

Object
type

Exampl
e

Example distinguished name

Domain demo.tes
t

dc=demo,dc=test

Base
organiza
tional
unit

Centrify ou=Centrify,dc=demo,dc=test

Zone
containe
r

Zones cn=Zones,ou=Centrify,dc=demo,dc=test

Parent
zone

HQ cn=HQ,cn=Zones,ou=Centrity,dc=demo,dc=test

Child
zone

Alpha cn=Alpha,cn=HQ,cn=Zones,ou=Centrity,dc=demo,dc=
test

Organiza
tional
unit

UNIX
Groups

“ou=UNIX Groups,ou=Centrify,dc=demo,dc=test”

UNIX
group

ApacheA
dmins

“cn=ApacheAdmin,ou=UNIX
Groups,ou=Centrify,dc=demo,
dc=test”

Comput
er in
Alpha
zone

RHEL cn=RHEL,cn=Computers,cn=Alpha,cn=HQ,cn=Zones,ou
=Centrity,dc=demo,dc=test

You should note that distinguished names can contain space, as illustrated by
the UNIX Groups organizational unit. To prevent Tcl from interpreting a space
as new element in a list, you can enclose the distinguished name with double
quotes (“ “) or using braces ({ }). When specifying distinguished names, you
should also be sure to use ou and cn correctly. Commands will fail if you refer
to an organizational unit using cn.

Create Tcl procedures

The following example demonstrates how to create procedures using the Tcl
proc command. These two procedures create a new Active Directory user and
Active Directory group, respectively, but first check to see if that object
already exists in Active Directory.

• • • • • •

Using the demonstration scripts 61

This example uses the Tcl catch and if commands to determine if the
account already exists. catch takes a Tcl script (in this case, the select_

object command) and returns a 1 if an error (in this case, the account does
NOT exist) occurs. Inside the if command, a non-zero result of the expression
causes the body commands (puts and create_aduser or create_adgroup) to
be executed. Otherwise, if select_object is successful (the account exists) it
does not create the new account.

See the AddUnixUsers script for a similar example that uses the catch

and if commands to determine if a user exists.

Create Active Directory group procedure

The following procedure creates an Active Directory group
if a
group with the same distinguished name does not already
exist.
proc my_create_adgroup {dn sam gtype} {

if { [catch {select_object $dn}] } {
If we fail to select the object, the group
does not exist. So we create it here.
puts "Creating $dn"
create_adgroup $dn $sam $gtype

} else {
puts "$dn exists. Do not create."

}
}

Create Active Directory user procedure

The following procedure creates an Active Directory user
if an
account with the same distinguished name does not already
exist.
proc my_create_aduser {dn upn sam pw} {

if { [catch {select_object $dn}] } {
If we fail to select the object, the account
does not exist. So we create it here.
puts "Creating $dn"
create_aduser $dn $upn $sam $pwd

} else {
puts "$dn exists. Do not create."

• • • • • •

ADEdit Command Reference and Scripting Guide 62

}
}

Reading command line input

In general, Tcl reads the arguments following the script name as a list and
creates the following three variables:

argv: A Tcl list containing all of the arguments in the command line

argc: A count of the number of arguments in the lists

argv0: The script name.

For example, the following script uses all three variables. This is a simple
command in the form

>/bin/sh MktDept.sh name name name

where name is a person’s name, such as Mary or Joe. If you want to use first
and last name, surround the name with quotes, for example “Jane Smith”.

This code sample demonstrates starting ADEdit from a shell script. The
subsequent examples use the executable file model.

MktDept.sh

#!/bin/sh
This script takes a list of names and displays it
#
\
exec adedit "$0" ${1+"$@"}
package require ade_lib
if { $argc == 0 } {

puts "Command format: $argv0 name name ..."
exit 1

}
set total $argc
puts "
The following people are in the marketing department"
while {$total > 0} {

incr total -1
puts "[lindex $argv $total]"
}

• • • • • •

Using the demonstration scripts 63

The first if statement uses the count, argc, to determine if any arguments
have been entered. If the argc value is equal to zero, the user did not enter
any names and the script displays the command format message. The argc

counter is used again to set the total count of names entered for the while
loop. Inside the loop, the names are drawn from the argv list.

Another useful command for parsing command line options is getopt. This
command derives from, but is different than, the Tcl getopt command. The
ADEdit getopt command has the following syntax:

getopt _argv name ?-var?

where:

_argv is the Tcl list that contains the command line arguments.

name is a label for the associated data.

?_var? is the variable name for the data.

For example, the following script illustrates the use of getopt to define the
user and group variables that will be used later in the script.

This script also demonstrates how to use a procedure, usage, that prompts
the user when she doesn’t enter all of the arguments. usage first displays the
full command syntax and then the missing argument.

The user and password arguments are optional. If the user enters a
user name without the password, the bind program automatically
prompts for the password. You do not need to include that prompt in
the script.

getopt-example

#!/bin/env adedit
This script takes a domain name and optionally user name
and password
and binds the user to the specified domain.
If the user does not specify a user name or password, she
is prompted.
#
package require ade_lib
proc usage {msg} {

puts {usage: -d <domain> [-u <user>] [-p
<password>]}

• • • • • •

ADEdit Command Reference and Scripting Guide 64

puts $msg
exit 1

}
if {[getopt argv -d domain] == 0} {

usage "Missing Domain, ex. centrify.demo"
}
if {[getopt argv -u user] != 0} {

if {[getopt argv -p password]} {
bind $domain $user $password

} else {
bind $domain $user}

} else {
puts "Enter administrator name:"

gets stdin user
bind $domain $user

}
puts "
Binding complete to $domain."

Create a parent zone

This sample script illustrates how you can create a parent zone. This script
uses the puts command to display information and to prompt the user to
specify variables that will be used to create the parent zone object. The
command line syntax is as follows:

>./CreateParentZone - z parentZone -u adminName [-p
password]

where:

parentZone is the name of the parent zone you want to create.

adminName is the name of an Active Directory user with administrator
privileges on the domain controller.

password is the administrator’s password. If you do not enter the
password in the command line, you are prompted to enter it.

Note that this sample script assumes you are using the default deployment
structure with the top-level organizational unit. If you are not using the default
deployment structure, you should modify the sample script to reflect the
structure you are using before testing its operation.

• • • • • •

Using the demonstration scripts 65

CreateParentZone

#!/bin/env adedit
This script creates a tree zone. Use this, for example,
to create the
parent zone for child zones created in other scripts.
package require ade_lib
proc usage {msg} {

puts {usage: -z >parentZone> -u >user>}
puts $msg
exit 1

}
if {[getopt argv -z parentZone] == 0} {

usage "Missing the name for the new zone"
}
puts "
Enter the domain name for the bind command"
gets stdin domain
if {[getopt argv -u user] != 0} {

if {[getopt argv -p password]} {
bind $domain $user $password
} else {
bind $domain $user}

} else {
puts "Enter administrator name"
gets stdin user
bind $domain $user

}
set domaindn [dn_from_domain $domain]
puts "
Enter the name of the Active Directory container that holds
the Centrify zone data"
gets stdin zonesNode
puts "
Enter the organizational unit with the Centrify zone data
container"
gets stdin baseOU
puts "Summary:"
puts "Domain is $domain. DN for the domain is $domaindn"
puts "The base OU is $baseOU."
puts "The container for the zone information is
$zonesNode"
puts "The new zone is named $parentZone"
#create the parent zone in Active Directory
puts "

• • • • • •

ADEdit Command Reference and Scripting Guide 66

Creating Centrify zone $parentZone"
create_zone tree
"cn=$parentZone,cn=$zonesNode,ou=$baseOU,$domaindn" std
puts "Created new zone:
cn=$parentZone,cn=$zonesNode,ou=$baseOU,$domaindn"

Create child zones

This script creates two child zones in the domain and parent zone specified in
the command line. The command line syntax is as follows:

>./CreateChildZones -d domain -z parentZone [-u adminName]
[-p password]

where:

domain is the domain name

parentZone is the name of an existing zone

adminName is the name of an Active Directory user with administrator
privileges on the domain controller

password is the administrator’s password. If you do not enter the
password in the command line, your are prompted for it

The password is optional. If you do not type it in the command line, the script
prompts you to enter it.

The script binds to the domain you specify using the user name and password
you provide. The script then prompts you to enter the name of the
organizational unit and container in which you store the zone information.
After that, it prompts you to enter names for the two child zones. Note that
this sample script assumes you are using the default deployment structure
with the top-level organizational unit. If you are not using the default
deployment structure, you should modify the sample script to reflect the
structure you are using before testing its operation.

To confirm the script ran successfully, open Access Manager and expand the
Child Zones node under the parent zone you specified in the command line. If
the two new child zones are listed, you can right-click each zone name to see
its zone properties.

• • • • • •

Using the demonstration scripts 67

CreateChildZones

#!/bin/env adedit
This script creates 2 child zones in the domain and
parent zone
specified in the command line.
#
package require ade_lib
proc usage {msg} {

puts {usage: -d <domain> -z <parentZone> [-u <user>] [-p
<password>]}
puts $msg

exit 1
}
if {[getopt argv -d domain] == 0} {

usage "Missing Domain, ex. demo.test"
}
if {[getopt argv -z parentZone] == 0} {

usage "Missing parent zone, ex. HQ"
}
if {[getopt argv -u user] != 0} {

if {[getopt argv -p password]} {
bind $domain $user $password
} else {

bind $domain $user}
} else {

puts "Enter administrator name"
gets stdin user
bind $domain $user

}
puts "
Enter the name of the container for the Centrify zone data"
gets stdin zoneContainer
puts "
Enter the organizational unit for the Centrify zone data"
gets stdin zoneContainerOU
Define distinguished name for domain
set domaindn [dn_from_domain $domain]
puts "
Summary:"
puts "Domain is $domain. DN for the domain is $domaindn"
puts "The base OU is $zoneContainerOU."
puts "The container for the zone information is
$zoneContainer
"

• • • • • •

ADEdit Command Reference and Scripting Guide 68

Create child zones
puts "Enter child zone name"
gets stdin czone1
puts "
Enter another child zone name"
gets stdin czone2
create_zone tree
"cn=$czone1,cn=$parentZone,cn=$zoneContainer,ou=$zoneContai
nerOU,$domaindn" std
create_zone tree
"cn=$czone2,cn=$parentZone,cn=$zoneContainer,ou=$zoneContai
nerOU,$domaindn" std
link the children to parent
select_zone
"cn=$czone1,cn=$parentZone,cn=$zoneContainer,ou=$zoneContai
nerOU,$domaindn"
set_zone_field parent
"cn=$parentZone,cn=$zoneContainer,ou=$zoneContainerOU,$doma
indn"
save_zone
select_zone
"cn=$czone2,cn=$parentZone,cn=$zoneContainer,ou=$zoneContai
nerOU,$domaindn"
set_zone_field parent
"cn=$parentZone,cn=$zoneContainer,ou=$zoneContainerOU,$doma
indn"
save_zone
puts "
Child zones $czone1 and $czone2 created in $parentZone"

Create privileged commands and roles

Users get the rights necessary to run privileged commands and access
applications from their role assignments. The predefined UNIX Login role
gives users basic access to UNIX computers without any elevated privileges.
The scripts in this section illustrate how you can create roles with additional
rights. The first sample script uses a separate text file to define a new role and
the commands users in that role are allowed to execute. The second sample
script illustrates how to define the commands and the role within the script
after prompting for bind credentials and the target zone.

Both scripts create the same commands and role.

• • • • • •

Using the demonstration scripts 69

Privileges and role defined in a file

For the first sample script, a single role and its privileged commands are
defined in the file Role_apacheAdmin.txt. This sample text file defines the
role name and a few sample commands that you might assign to an Apache
server administrator. For example:

ApacheAdminRole
vi /etc/httpd/conf/httpd.conf
apachectl *
htpasswd *

The first line in the Role_apacheAdmin.txt file specifies the new role name.
The subsequent lines specify the commands to add to the role. You can edit
the text file to suit your environment. For example, you might want add or
remove commands or modify the path to the Apache configuration file. To
create the role and commands, you can then run the MakeRole sample script
and specify the Role_apacheAdmin.txt file name as a command-line
argument. The MakeRole sample script then prompts you to enter the domain
name, account, and password for the bind command and to type the name of
the parent zone where the sample role will be created.

Note that you must specify a parent zone for this sample script. The second
sample ApacheAdminRole script shown in Privileges and roles defined in the
script displays the list of zones in the domain to illustrate how you can create
a role in a child zone. In addition, this sample script assumes you are using the
default deployment structure with the top-level organizational unit. If you are
not using the default deployment structure, you should modify the sample
script to reflect the structure you are using before testing its operation.

MakeRole

The MakeRole sample script creates a role with the set of privileged
commands defined in the sample Role_apacheAdmin.txt file.

#!/bin/env adedit
This script creates a role consisting of a
set of privileged commands
The role name and commands are specified
in a separate file.
#
The first line in the input file should be
the new role name.

• • • • • •

ADEdit Command Reference and Scripting Guide 70

The subsequent lines are the names of the
privileged commands to
add to the role.
For example:
audit_admin_cmds
/usr/bin/vi /etc/security/audit/config
/usr/bin/vi /etc/security/audit/objects
package require ade_lib
if { $argc != 1 } {

puts "usage: $argv0 file"
exit 1

}
if {[catch {set fp [open [lindex $argv 0] r]} errmsg]}

{
puts "Cannot open [lindex $argv 0]."
exit 1

}
Get domain and bind
puts "Enter domain name"
gets stdin domain
set domaindn [dn_from_domain $domain]
puts "Enter account name with administrator privileges"
gets stdin administrator
puts "Enter $administrator password"
gets stdin APWD
bind $domain $administrator "$APWD"
Select the target zone and base organizational unit
puts "Enter the target zone name for the new role"
gets stdin zonename
puts "
Enter the name of the Active Directory

container that holds the Centrify zone data"
gets stdin zonesNode
puts "
Enter the organizational unit with the Centrify zone data
container"
gets stdin baseOU
select_zone
"cn=$zonename,cn=$zonesNode,ou=$baseOU,$domaindn"
if {[gets $fp line] == -1} {

puts "Cannot read [lindex $argv 0]."
exit 1

}
Create role
puts "Creating role...$line"

• • • • • •

Using the demonstration scripts 71

set role $line
new_role "$role"
save_role "$role"
set count 0
while {[gets $fp line] >= 0} {

incr count
Create command. Each command will be named
based on the role defined in the first line
and the command’s line number in the file

set cmd_name $role$count
new_dz_command "$cmd_name"
set the command fields
set cmd_path $line
set_dzc_field cmd "$cmd_path"
set_dzc_field dzdo_runas root
set_dzc_field umask 077
prevent nested execution
set_dzc_field flags 1
save the command
save_dz_command
Add the command to the Role
add_command_to_role "$cmd_name"

}
close $fp
save_role "$role"

Privileges and roles defined in the script

In this sample script, you create the same Apache administrator commands
and role as the previous script. However, this script displays a list of the zones
in the domain and lets you select in which zone to create the commands and
role.

ApacheAdminRole

#!/bin/env adedit
puts "This script creates privileged commands and the
ApacheAdminRole in the zone entered"
package require ade_lib
puts "
Enter the domain name"
gets stdin domain
puts "
Enter the account name to use to modify Active Directory"

• • • • • •

ADEdit Command Reference and Scripting Guide 72

gets stdin acctName
bind $domain $acctName
set domaindn [dn_from_domain $domain]
set zonelist [get_zones $domain]
set numberZones [llength $zonelist]
set row 1
set zonenum 0
puts "
This domain contains the following zones"
while {$numberZones != 0} {

puts "$row. [lindex $zonelist $zonenum]"
incr zonenum
incr row
incr numberZones -1

}
puts "
Enter the row number of the target zone"
gets stdin rowSelect
set zone [lindex $zonelist [incr rowSelect -1]]
select_zone "$zone"
puts "
Creating command-level Apache admin rights in $zone"
puts "
Creating web_edit_httpd_config"
new_dz_command web_edit_httpd_config
set_dzc_field cmd "vi /etc/httpd/conf/httpd.conf"
set_dzc_field description "edit httpd config file"
set_dzc_field dzdo_runas root
set_dzc_field dzsh_runas root
set_dzc_field path /usr/local/apache2/bin
set_dzc_field flags 1
save_dz_command
puts "
Creating web_apachectl"
new_dz_command web_apachectl
set_dzc_field cmd "apachectl *"
set_dzc_field description "Web Apache Server Control"
set_dzc_field dzdo_runas root
set_dzc_field dzsh_runas root
set_dzc_field path /usr/local/apache2/bin
save_dz_command
puts "
Creating web_htpasswd"
new_dz_command web_htpasswd
set_dzc_field cmd "htpasswd *"

• • • • • •

Using the demonstration scripts 73

set_dzc_field description "Web Apache Manage user files"
set_dzc_field dzdo_runas root
set_dzc_field dzsh_runas root
set_dzc_field path /usr/local/apache2/bin
save_dz_command
#--

Create ApachedAdminRights role
The new_role command creates the role in the currently
selected zone.
puts "
Creating the ApacheAdminRole with these rights"
In each role you need to set the sysrights with the set_
role_field
to the following binary values
password_login = 01
sso = 02
ignore_disabled = 04
full_shell = 08
new_role ApacheAdminRights
add_command_to_role web_edit_httpd_config
add_command_to_role web_apachectl
add_command_to_role web_htpasswd
set_role_field sysrights [expr 0x0000000b] #full_shell |
sso | password_login
save_role
save_zone

Add and provision UNIX users

It is difficult to provision a lot of UNIX users and ensure that the UID is unique
in the domain. To assist you with the process, Centrify provides a set of
features called the Zone Provisioning Agent. The Zone Provisioning Agent
includes a service that automatically assigns a unique UID and other UNIX
profile attributes, such as the home directory, default shell, and primary GID,
based on rules you define.

This script demonstrates how you could use the Zone Provisioning Agent to
add and provision users. For this sample script, the list of UNIX users is
defined in the source file named users.txt and the Active Directory source
group is Unix Users.

• • • • • •

ADEdit Command Reference and Scripting Guide 74

To learn more about the Zone Provisioning Agent and automated
provisioning, see the Planning and Deployment Guide.

users.txt

You specify the names to be added in a text file in which each name is on a
separate line. Be sure to use line feed only as the end-of-line; do not use CR-LF.
The sample file in the distribution package contains the following names:

Amy.Adams

Brenda.Butler

Dennis.Day

Eric.Edwards

AddUnixUsers

In the following script, you specify the file name with the user names in the
command line. The script then prompts you for the additional information
required. The target Active Directory group—Unix Users—is hard-coded into
the script.

This script uses the Tcl catch command three times to control processing
when an error occurs.

In the first case, it is used to exit gracefully if the specified file cannot be
opened.

In the second case, catch is used to determine if the user already exists.
An error here indicates that the user does not exist and, rather than
exiting, the else statement creates the user. (If the user already existed,
you would not want to create another Active Directory account.)

In the third case, catch is used to exit gracefully if the user is already a
member of the Unix Users group.

#!/bin/env adedit
This script creates an Active Directory account
for each user the specified
and adds the user to UNIX Users group.
This automatically fills in their UNIX profile.
Command line input: file name w/ user names in

• • • • • •

Using the demonstration scripts 75

format ffff.llll only
Prompted input: domain, administrator
#name, default password
package require ade_lib
if { $argc != 1 } {

puts "usage: $argv0 file"
exit 1

}
if {[catch {set users [open [lindex $argv 0] r]}

errmsg]} {
puts "Cannot open [lindex $argv 0]."
exit 1

}
Get domain and bind
puts "Enter domain name"
gets stdin domain
set domaindn [dn_from_domain $domain]
puts "Enter account name with administrator privileges"
gets stdin administrator
puts "Enter $administrator password"
gets stdin APWD
bind $domain $administrator "$APWD"
puts "
Define password to be used for all accounts"
gets stdin pwd
Now start creating accounts from users
example: "cn=Ellen Edwards,cn=Users,$domaindn"
"Ellen.Edwards@$domain" ellen.edwards pwd
while {[gets $users sam] >= 0} {

set name [split $sam .]
set dn "cn=[lindex $name 0] [lindex $name 1],

cn=Users,$domaindn"
set upn $sam@$domain
if { [catch { select_object $dn }] } {

If we fail to select the object,
most probably it
does not exist. So we create it here.
puts "Creating $dn"
create_aduser $dn $upn $sam $pwd

} else {
puts "$dn exists. Skip creating."

}
Because we already installed and started ZPA,
this provisions the
Active Directory account

• • • • • •

ADEdit Command Reference and Scripting Guide 76

catch { add_user_to_group $sam@$domain
"UNIX Users@$domain" }

}
close $users

Simple tools

The following scripts are simple “utilities” for getting information from Active
Directory about the managed computers and users accounts:

computers-report: Lists the managed computers in the zone.

useracc-report: List the Active Directory users in the domain and several
account properties.

user-report: Lists the users in a zone.

GetComputers: Lists all of the managed computers in the specified
domain and the zone to which each computer is joined.

Following these scripts are sample scripts that demonstrate how you can use
a script that calls, for example, commonly-used commands in other scripts.
For more information, see Run a script from a script.

computers-report

Use this command to list managed computers in the zone. The command line
arguments are as follows:

Label Required/Optional Description
-
domain

required Domain name.

-m optional Bind using the ADEdit host computer’s credentials
(see bind).

You can use either the computer credentials (-m)
or the user account credentials (-u).

-u optional Administrator’s account name.

-p optional Administrator’s account password.

Note: If you do not enter the password in the

• • • • • •

Using the demonstration scripts 77

Label Required/Optional Description
command line you will be prompted to enter it.

-sep optional Separator used between data. The default is
separator is the pipe (|) character.

#!/bin/env adedit
This script lists the managed computers on the zone.
Command line input is the domain, the
administrator account name and
the separator to use between computer's field
values in the output
package require ade_lib
Lists all of the managed computers and the zone
proc usage {msg} {

puts {usage: -domain <domain> [-m] [-u <user>]
[-p <password>] [-sep csv | tab | <char>]}

puts $msg
exit 1

}
if {[getopt argv -domain domain] == 0} {

usage "Missing domain"
}
set verbose 0
if {[getopt argv -v]} {

set verbose 1
}
set sep "|"
getopt argv -sep sep
if {$sep == "csv"} {set sep ","}
if {$sep == "tab"} {set sep "\t"}
if {[getopt argv -m]} {

bind -gc -machine $domain
} else {

if {[getopt argv -u user]} {
if {[getopt argv -p password]} {

bind -gc $domain $user $password
} else {
bind -gc $domain $user}

} else {
bind -gc $domain

}
}
this code runs entirely off the GC
cache on

• • • • • •

ADEdit Command Reference and Scripting Guide 78

set scps [get_objects -gc -depth sub [dn_from_domain
$domain] {(&(displayName=$CimsComputerVersion*)
(objectClass=serviceConnectionPoint))}]
foreach scp $scps {

select_object -gc $scp
set name [get_object_field name]
set parent ""
first look for parentLink
foreach k [get_object_field keywords] {

set bits [split $k ':']
if {[lindex $bits 0] == "parentLink"} {

set sid [lindex $bits 1]
#ok we got it
make sure it exists

catch {set parent [principal_from_sid $sid]}
}

}
if we didn't then try by managed By (DC3)
if {$parent == ""} {

set mb [get_object_field managedBy]
if {$mb != ""} {

set parent $mb
}

}
set orphan 0
if {$parent == ""} {set orphan 1}

set path [get_parent_dn [get_parent_dn
[get_object_field dn]]]

set zone [string range [get_rdn $path] 3 end]
puts $name$sep$zone$sep$orphan

}

useracc-report

Use this command to list all users and their Active Directory account control
values. The command line arguments are as follows:

Label Required/Optional Description
-
domain

required Domain name

-m optional Bind using the ADEdit host machine’s credentials
(see bind)

• • • • • •

Using the demonstration scripts 79

Label Required/Optional Description
Note: If you use -m you do not need to enter -u

-u optional Administrator’s account name.

-p optional Administrator’s account password.

Note: If you do not enter the password in the
command line you will be prompted to enter it.

-sep optional Separator used between data. Default is |

#!/bin/env adedit
This script lists all the users and their Active
Directory account control values
package require ade_lib
List users and the following field
proc usage {msg} {

puts {usage: -domain <domain> [-m] [-u
<user>] [-p <password>] [-sep csv | tab | <char>]}

puts $msg
exit 1

}
if {[getopt argv -domain domain] == 0} {

usage "Missing domain"
}
set verbose 0
if {[getopt argv -v]} {

set verbose 1
}
set sep "|"
getopt argv -sep sep
if {$sep == "csv"} {set sep ","}
if {$sep == "tab"} {set sep "\t"}
if {[getopt argv -m]} {

bind -machine $domain
} else {

if {[getopt argv -u user]} {
if {[getopt argv -p password]} {

bind $domain $user $password
} else {
bind $domain $user}

} else {
bind $domain

}
}
cache on

• • • • • •

ADEdit Command Reference and Scripting Guide 80

proc my_convert_msdate {msdate} {
if {$msdate==9223372036854775807} {

return -1
}
return [clock format [expr ($msdate/10000000)-

11644473600] -format "%m/%d/%y %H:%M:%S"]
}
proc nice_date {date} {
if {$date == ""} {return $date}
if {$date == 0} {return ""}
set ret [my_convert_msdate $date]
if {$ret == -1} {return ""}
return $ret;

}
set users [get_objects -depth sub [dn_from_domain $domain]
"(objectcategory=Person)"]
foreach user $users {

select_object $user
set uac [get_object_field userAccountControl]
if {$uac == ""} {continue}
gof is get_object_field
eval "set name [gof cn]"
#puts [gof dn]
set sam [gof sAMAccountName]
set exp [nice_date [gof accountExpires]]
set locked [nice_date [gof lockoutTime]]
set lastlogon [nice_date [gof lastLogon]]
set enabled [expr $uac&0x2]
set enabstr "False"
if {$enabled} {set enabstr "True"}
puts

$name$sepsamsepexpsep$locked$sep$lastlogon$sep$enabstr
}

user-report

Use this command to lists the users in the specified zone. The command line
arguments are as follows:

Label Required/Optional Description
-z required The distinguished name of the zone

-m optional Bind using the ADEdit host machine’s credentials

• • • • • •

Using the demonstration scripts 81

Label Required/Optional Description
(see bind)

Note: If you use -m you do not need to enter -u

-u optional Administrator’s account name.

-p optional Administrator’s account password.

Note: If you do not enter the password in the
command line you will be prompted to enter it.

#!/bin/env adedit
This script lists the users in the zone you specify in
the command line.
On the command line use either -m or -u
package require ade_lib
proc usage {msg} {

puts {usage: -z <zoneDN> [-m] [-u <user>] [-p
<password>]}

puts $msg
exit 1

}
if {[getopt argv -z zoneDN] == 0} {

usage "Missing input zone. Enter full
distinguished name"
}
if {[catch {domain_from_dn $zoneDN} domain]} {

usage "Invalid input zone name. Enter full
distinguished name"
}
set verbose 0
if {[getopt argv -v]} {

set verbose 1
}
if {[getopt argv -m]} {

bind -machine $domain
} else {

if {[getopt argv -u user]} {
if {[getopt argv -p password]} {

bind $domain $user $password
} else {
bind $domain $user}

} else {
bind $domain

}
}

• • • • • •

ADEdit Command Reference and Scripting Guide 82

select_zone $zoneDN
list_zone_users

GetComputers

Use this command to list all the Centrify-managed computers in the specified
domain. Enter the domain name in the command line.

#!/bin/env adedit
GetComputers
Purpose: Retrieves a listing of all UNIX computers in all
Centrify Zones.
package require ade_lib
puts "
This script retrieves a listing of all UNIX computers in
the specified domain"
puts "and shows the zone to which it is joined"
if { $argc == 0 } {

puts "
Command format: $argv0 domain name"
exit 1

}
set domain [lindex $argv 0]
Use lindex command because argv is a list and bind
requires a string
puts "
Enter administrator name for bind command"
gets stdin admin
bind $domain $admin
foreach ZONE [get_zones $domain] {

select_zone $ZONE
foreach COMPUTER [get_zone_computers] {

puts -nonewline $COMPUTER:;
puts $ZONE;

}
}

Run a script from a script

The following scripts illustrate the use of the Tcl source command to run the
script in a specified file. In this example, the source file is setenv, which

• • • • • •

Using the demonstration scripts 83

prompts the user to enter environment variables such as the domain and
zone.

You may find repeated use of setenv to be maddening since it
prompts you for all of the environment variables regardless of
whether the command actually needs them. This is done for
demonstration purposes only. In a production environment, you
would eliminate the prompts you don’t need by tailoring setenv

specifically to your environment. Feel free to remove or comment out
parts when you’ve had enough.

The subsequent scripts in this section call the setenv script and then run a
short script that does simple queries, such as get the child zones, get the
computers in the zone, and get the groups.

setenv

This script prompts you to enter data that can be used in the calling script.
This example is intended as a demonstration only. Not all of the information is
relevant to the calling script. Note that this sample script assumes you are
using the default deployment structure with a top-level organizational unit. If
you are not using the default deployment structure, you should modify the
sample script to reflect the structure you are using before testing its
operation.

Setenv file contents
Purpose: Sets up a common environment for the following
Active Directory
tools, selecting the Active Directory Domain, binding the
user, and
defining commonly used variables.
Other Active Directory tools:
GetZones
GetUsers
GetGroups
GetChildZones
GetComputers
puts "
This portion of the script prompts you to enter the domain
and account name for the bind command."
If you are always using the same domain, comment out the
puts and gets and use the set command instead

• • • • • •

ADEdit Command Reference and Scripting Guide 84

puts "
Enter the domain name"
gets stdin domain
get the distinguished name for the domain.
set domaindn [dn_from_domain $domain]
puts "
Enter administrator account name for bind command"
gets stdin admin
bind $domain $admin
puts "
bind to $domain complete"
puts "
The next two prompts ask you to enter the OU and container
for your zone information"
puts "
Enter the name of the Active Directory container that holds
the Centrify zone-related data"
gets stdin zonesContainer
If you are always using the same zone, comment out the
puts and gets and use the set command instead
set zonesContainer <Active Directory container with zones
data>
puts "
Enter the name of the organizational unit that has the zone
container."
gets stdin zonesContainerOU
If you are always using the same OU for the zone
container, comment out the puts and gets and use the set
command instead
set zonesContainerOU <Active Directory OU with zones
container>
puts "
Enter the base organizational unit with the Centrify
managed computers data"
gets stdin baseOU
If you are always using the same base OU, comment out the
puts and gets commands and use the set command instead
set baseOU <base OU name>
puts "
The next prompt asks for the parent zone."
If you are always using the same zone, comment out the
puts and gets and use the set command instead
set parentZone <parent zone name>
puts "
Enter the parent zone name"

• • • • • •

Using the demonstration scripts 85

gets stdin parentZone

GetZones

Use this script to get a list of all the zones in a domain.

#!/bin/env adedit
GetZones
Purpose: Performs a recursive listing of all Centrify
zones in the specified
domain
package require ade_lib
source setenv
puts "
This script retrieves a recursive listing of all Centrify
zones in the $domain domain"
puts "
The Active Directory folder with the Centrify zone data is
named $zonesContainer"
puts "
That container is in organizational unit $zonesContainerOU"
puts "
The parent zone is $parentZone"
foreach ZONE [get_zones $domain] {

puts $ZONE;
}

GetUsers

Use this script to get a list of all users in a zone.

#!/bin/env adedit
GetUsers
Purpose: Operates on a recursive listing of all UNIX
users in all
Centrify Zones, and retrieves the administered UNIX
attribute values
for each user object in each zone.
package require ade_lib
puts "
This script retrieves the UNIX attributes for each user in
each zone in the specified domain"
source setenv

• • • • • •

ADEdit Command Reference and Scripting Guide 86

foreach ZONE [get_zones $domain] {
select_zone $ZONE
foreach USER [get_zone_users] {

save_zone_user $USER
puts -nonewline "[get_zone_user_field uname]:

[gzuf uid]:[gzuf gid]:[gzuf gecos]:[gzuf home]:[gzuf
shell]"; puts :$USER:$ZONE

}
}

GetGroups

Use this script to get the UNIX group attribute values for the groups in the
managed computers.

#!/usr/bin/env adedit
GetGroups
Purpose: Retrieves the UNIX group attribute values for
each UNIX
group administered in the parent zone specified in
setenv.
To select a different zone, change the DN in the select_
zone command
package require ade_lib
puts "
This script retrieves the group attribute values for each
UNIX group in the specified parent zone"
source setenv
select_zone
"CN=$parentZone,CN=$zonesContainer,OU=$zonesContainerOU,$do
maindn"
foreach GROUP [get_zone_groups] {

select_zone_group $GROUP
puts -nonewline "[get_zone_group_field name]:[gzgf

gid]"; puts :$GROUP
}

GetChildZones

Use this command to get a list of the child zones for the specified parent.

#!/bin/env adedit
GetChildZones

• • • • • •

Using the demonstration scripts 87

Purpose: Retrieves a recursive listing of all new
hierarchical Centrify child
zones administered underneath the parent zone specified
in setenv
#
package require ade_lib
source setenv
puts "
This script retrieves a recursive listing of all child
zones in $parentZone"
puts "
The Active Directory folder with the Centrify zone
information is $zonesContainer"
select_zone
"CN=$parentZone,CN=$zonesContainer,OU=$zonesContainerOU,$do
maindn"
foreach ZONE [get_child_zones -tree] {

puts $ZONE;
}

• • • • • •

ADEdit Command Reference and Scripting Guide 88

ADEdit command reference

This chapter describes each ADEdit command in alphabetical order. Each
command description includes details about the options and arguments you
can specify and the values returned, if applicable.

Inn, addition, some ADEdit commands can only be used when you are working
with hierarchical zones. Other commands can be used in classic or
hierarchical zones, but require you to specify the zone type. For each
command, the Zone type section indicates whether there are any
zone-related constraints as follows:

Hierarchical only: You must have a hierarchical zone selected for the
command to work.

Classic and hierarchical: You can use the command in both classic
zones and hierarchical zones. Options in the command let you specify
whether you are working with a classic or hierarchical zone. In most
cases, commands that work in both classic and hierarchical zones,
require the classic zone to be a classic4 zone. The classic3 zone type is
intended for backward compatibility with older agents and only
commands where the zone type is not applicable are supported.

Classic only: You must have a classic4 zone selected for the command
to work.

Not applicable: You can use the command because the zone type does
not matter.

In addition to the zone type, syntax, and return values, each command
description includes at least one usage example and a summary of related
commands, if appropriate.

• • • • • •

ADEdit Command Reference and Scripting Guide 89

add_command_to_role

Use the add_command_to_role command to add a privileged UNIX command
to the currently selected role that is stored in memory. The command must
already exist. You can create privileged UNIX commands using new_dz_

command.

The add_command_to_role command does not change the role as it is stored
Active Directory. Running the command changes the role only in memory. You
must save the role before the added command takes effect in Active
Directory. If you select another role or quit ADEdit before saving the role, any
commands you’ve added since the last save won’t take effect.

Zone type

Classic and hierarchical

Syntax

add_command_to_role command[/zonename]

Abbreviation

acr

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit command reference 90

Argument Type Description
command
[/zonename]

string Required. Specifies the name of an existing UNIX command to
add to the currently selected role.

If the UNIX command right that you want to add is defined in
the current zone, the zonename argument is optional. If the
UNIX command right is defined in a zone other than the
currently selected zone, the zonename argument is required to
identify the specific UNIX command right to add.

Return value

This command returns nothing if it runs successfully.

Examples

add_command_to_role basicshell/global

This example adds the command basicshell, defined in the global zone, to
the currently selected role.

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select a role to
work with:

get_role_commands returns a Tcl list of the UNIX commands for the role.

new_role creates a new role.

select_role retrieves a role from Active Directory.

The following commands enable you to work with a currently selected role:

add_pamapp_to_role adds a PAM application to the role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM applications for the role.

• • • • • •

ADEdit Command Reference and Scripting Guide 91

get_role_field reads a field value from the role.

list_role_rights lists of all privileged commands and PAM application
rights for the role.

remove_command_from_role removes a UNIX command from the role.

remove_pamapp_from_role removes a PAM application from the role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the role.

add_map_entry

Use the add_map_entry command to add an entry to the currently selected
NIS map stored in memory. This command does not support a comment field.
If you want to add a comment along with the entry use add_map_entry_with_
comment instead.

To change an existing entry in a NIS map, use delete_map_entry to remove
the entry, then add the revised version using add_map_entry.

The add_map_entry command changes the NIS map in memory and in Active
Directory. You do not need to save the NIS map for the added entry to take
effect in Active Directory.

Zone type

Not applicable

Syntax

add_map_entry key value

Abbreviation

ame

• • • • • •

ADEdit command reference 92

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
key string Required. Specifies the key of the NIS map entry.

value string Required. Specifies the value of the NIS map entry.

Return value

This command returns nothing if it runs successfully.

Example

add_map_entry Finance “Hank@acme.com,Sue@acme.com”

This example adds the NIS map entry Finance with the value
Hank@acme.com,Sue@acme.com to the currently selected NIS map.

Related commands

The following commands enable you to view and select the NIS map you want
to work with:

get_nis_maps returns a Tcl list of NIS maps in the currently selected
zone.

list_nis_maps lists to stdout of all NIS maps in the currently selected
zone.

new_nis_map creates a new NIS map and stores it in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 93

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use additional
commands to work with that map’s entries or use the following commands to
delete or save the currently selected NIS map:

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

save_nis_map saves the selected NIS map with its current entries to
Active Directory.

add_map_entry_with_comment

Use the add_map_entry_with_comment command to add an entry to the
currently selected NIS map stored in memory and lets you include a
comment. The comment can be up to 2048 characters and does not support
new line syntax.

To change an existing entry in a NIS map, use delete_map_entry to remove
the entry, then add the revised version using add_map_entry_with_comment.

The add_map_entry_with_comment command changes the NIS map in
memory and in Active Directory. You do not need to save the NIS map for the
added entry to take effect in Active Directory.

Zone type

Not applicable

Syntax

add_map_entry_with_comment key value comment

Abbreviation

amewc

• • • • • •

ADEdit command reference 94

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
key string Required. Specifies the key of the NIS map entry.

value string Required. Specifies the value of the NIS map entry.

comment string Required. Specifies the comment for the NIS map entry.

Return value

This command returns nothing if it runs successfully.

Example

add_map_entry_with_comment Finance
“Hank@acme.com,Sue@acme.com” “new Finance staff”

This example adds the NIS map entry Finance, with the value
Hank@acme.com,Sue@acme.com and comment new Finance staff to the
currently selected NIS map.

Related commands

Before you use this command, you must have a currently selected NIS map
stored in memory. The following commands enable you to view and select a
NIS map to work with:

get_nis_maps returns a Tcl list of NIS maps in the current zone.

list_nis_maps lists to stdout the NIS maps in the current zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 95

new_nis_map creates a new NIS map.

select_nis_map retrieves a NIS map from Active Directory.

The following commands enable you to work with a currently selected NIS
map:

add_map_entry adds an entry to the NIS map.

delete_map_entry removes an entry from the NIS map.

get_nis_map_field reads a field value from the NIS map.

get_nis_map and get_nis_map_with_comment return a Tcl list of NIS map
entries.

list_nis_map and list_nis_map_with_comment lists NIS map entries to
stdout.

add_object_value

Use the add_object_value command to add a value to a multi-valued field
(attribute) of a specified Active Directory object in Active Directory. This
command only works on the object in Active Directory, not on the currently
selected Active Directory object in memory (if there is one).

If the added value isn’t valid, Active Directory will report an error and add_

object_value won’t save the value.

This command is useful for fields that may be very large—members of a
group, for example.

Zone type

Not applicable

Syntax

add_object_value dn field value

• • • • • •

ADEdit command reference 96

Abbreviation

aov

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
dn string Required. Specifies the distinguished name (DN) of the Active

Directory object in which to add a value.

field string Required. Specifies the name of a multi-valued field in the
currently selected Active Directory object to which to add the
value. This can be any field that is valid for the type of the
currently selected Active Directory object.

value Required. Specifies the value to add to the field. The type of
value depends on the field specified by the field argument.

Return value

This command returns nothing if it runs successfully.

Examples

add_object_value cn=groups,dc=acme,dc=com users adam.avery

This example adds the value adam.avery to the users field of the groups

object specified by the DN.

• • • • • •

ADEdit Command Reference and Scripting Guide 97

Related commands

The following commands enable you to work with Active Directory objects:

delete_object deletes the Active Directory object from Active Directory.

delete_sub_tree deletes the Active Directory object and all of its children.

get_object_field reads a field value from the Active Directory object.

remove_object_value removes a value from a multi-valued attribute of
the Active Directory object.

save_object saves the Active Directory object.

set_object_field sets a field value in the Active Directory object.

add_pamapp_to_role

Use the add_pamapp_to_role command to add a PAM application right to the
currently selected role stored in memory. The PAM application right must
already exist. You can create PAM application rights using new_pam_app.

The add_pamapp_to_role command does not change the role as it is stored
Active Directory. The command only changes the role stored in memory. You
must save the role using save_role before the added PAM application takes
effect in Active Directory. If you select another role or quit ADEdit before
saving the role, any PAM application rights you’ve added since the last save
won’t take effect.

You can only use the add_pamapp_to_role if the currently selected zone is a
classic4 or hierarchical zones. The command does not work in other types of
zones.

Zone type

Classic and hierarchical

Syntax

add_pamapp_to_role app[/zonename]

• • • • • •

ADEdit command reference 98

Abbreviation

apr

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
app
[/zonename]

string Required. Specifies the name of an existing PAM application
right to add to the currently selected role.

If the PAM application right that you want to add is defined in
the current zone, the zonename argument is optional. If the
PAM application right is defined in a zone other than the
currently selected zone, the zonename argument is required to
identify the specific PAM application right to add.

Return value

This command returns nothing if it runs successfully.

Examples

The following example adds the PAM application login-all, which is defined
in the currently selected zone, to the currently selected role:

add_pamapp_to_role login-all

The following example adds the PAM application access right oracle-admin
from the emea zone to the currently selected role:

add_pamapp_to_role oracle-admin/emea

• • • • • •

ADEdit Command Reference and Scripting Guide 99

Related commands

The following commands enable you to view and select the role you want to
work with:

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

get_roles returns a Tcl list of roles in the current zone.

list_roles displays a list to stdout of all roles in the currently selected
zone.

After you have a role stored in memory, you can use additional commands to
work with that role’s fields, commands, and applications or use the following
commands to delete or save the currently selected role:

save_role saves the selected role with its current settings to Active
Directory.

delete_role deletes the selected role from Active Directory and from
memory.

add_sd_ace

Use the add_sd_ace command to add an access control entry (ACE) in ACE
string form to a security descriptor (SD) in SDDL (security descriptor
description language) form.

The command takes an ACE string and an SDDL string. The command writes
the ACE string there. The command returns an SDDL string that includes the
added ACE string.

Zone type

Not applicable

• • • • • •

ADEdit command reference 100

Syntax

add_sd_ace sddl_string ace_string

Abbreviation

ase

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
sddl_string string Required. Specifies a security descriptor in SDDL format.

ace_string string Required. Specifies an access control entry in ACE string form
(which is always enclosed in parentheses)

Return value

This command returns a security descriptor string in SDDL format if it runs
successfully.

Examples

This example adds an ACE string to an SDDL. The ACE string to add is at the
end of the command in boldface:

add_sd_ace O:DAG:DAD:AI(A;;RCWDWOCCDCLCSWRPWPLOCR;;;DA)
(OA;;CCDC;bf967aba-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;bf967a9c-0de6-11d0-a285-00aa003049e2;;AO)

• • • • • •

ADEdit Command Reference and Scripting Guide 101

(OA;;CCDC;bf967aa8-0de6-11d0-a285-00aa003049e2;;PO)
(A;;RCLCRPLO;;;AU)(OA;;CCDC;4828cc14-1437-45bc-9b07-
ad6f015e5f28;;AO)
(OA;CIIOID;RP;4c164200-20c0-11d0-a768-
00aa006e0529;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;4c164200-20c0-11d0-a768-
00aa006e0529;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a86-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a9c-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967aba-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RCLCRPLO;;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RCLCRPLO;;bf967a9c-
0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RCLCRPLO;;bf967aba-0de6-11d0-a285-
00aa003049e2;RU)
(OA;CIID;RPWPCR;91e647de-d96f-4b70-9557-d63ff4f3ccd8;;PS)
(A;CIID;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;EA)
(A;CIID;LC;;;RU)(A;CIID;SDRCWDWOCCLCSWRPWPLOCR;;;BA)
(A;;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;SY)

This example returns:

O:DAG:DAD:AI(A;;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;SY)
(A;;RCWDWOCCDCLCSWRPWPLOCR;;;DA)
(OA;;CCDC;bf967aba-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;bf967a9c-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;bf967aa8-0de6-11d0-a285-00aa003049e2;;PO)

• • • • • •

ADEdit command reference 102

(A;;RCLCRPLO;;;AU)(OA;;CCDC;4828cc14-1437-45bc-
9b07-ad6f015e5f28;;AO)(OA;CIIOID;RP;4c164200-20c0-11d0-
a768-00aa006e0529;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RP;4c164200-20c0-11d0-a768-
00aa006e0529;bf967aba-0de6-11d0-a285-
00aa003049e2;RU)(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-
00aa003049e2;RU)(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-
00aa003049e2;RU)(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;bf967aba-0de6-11d0-a285-
00aa003049e2;RU)(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;bf967aba-0de6-11d0-a285-
00aa003049e2;RU)(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a86-0de6-11d0-a285-
00aa003049e2;ED)(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a9c-0de6-11d0-a285-
00aa003049e2;ED)(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967aba-0de6-11d0-a285-
00aa003049e2;ED)(OA;CIIOID;RCLCRPLO;;4828cc14-1437-45bc-
9b07-ad6f015e5f28;RU)(OA;CIIOID;RCLCRPLO;;
bf967a9c-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RCLCRPLO;;bf967aba-0de6-11d0-a285-
00aa003049e2;RU)
(OA;CIID;RPWPCR;91e647de-d96f-4b70-9557-d63ff4f3ccd8;;PS)
(A;CIID;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;EA)
(A;CIID;LC;;;RU)(A;CIID;SDRCWDWOCCLCSWRPWPLOCR;;;BA)

Related commands

The following commands enable you to work with security descriptor strings:

explain_sd converts security descriptor in SDDL format to a human-
readable form.

• • • • • •

ADEdit Command Reference and Scripting Guide 103

remove_sd_ace removes an access control entry (ACE) from a security
descriptor.

set_sd_owner sets the owner of a security descriptor.

bind

Use the bind command to bind ADEdit to a domain. Multiple bind commands
can bind ADEdit to multiple domains in multiple forests. ADEdit must be
bound to at least one domain before its commands have any effect on Active
Directory or Centrify objects. When ADEdit is bound to multiple domains, its
commands can work on any of those domains.

You can use bind to bind to any domain for which the DNS can resolve a
name and for which you have log-in permission. ADEdit’s host computer does
not need to be joined to a domain for ADEdit to bind to and work on that
domain.

You can optionally specify a server in the domain to bind to, in which case
ADEdit binds to that domain controller. If you don’t specify a server, ADEdit
automatically binds to the closest, fastest domain controller. You can use
options to request automatic binding to a global catalog (GC) domain
controller or to a writable domain controller.

You can authorize the bind connection to a domain controller in the following
ways:

If you provide no user or password arguments, bind uses the user name
and password stored in the current Kerberos credential cache on the
ADEdit host computer.

If you provide a user argument without the password argument, bind in
interactive mode prompts you for a password, then uses the user

argument along with your entered password for authorization.

If you provide a user argument and password argument, bind uses the
user and password arguments for authorization.

If you specify the -machine option, ADEdit authenticates using the
credentials for the ADEdit host computer. You cannot provide user or
password arguments if you specify the -machine option. Note that you
must have read permission on the host’s credential files to use this
option, so you must typically have root permissions to use the option.

• • • • • •

ADEdit command reference 104

Zone type

Not applicable

Syntax

bind [-gc] [-write] [-machine] [server@]domain [user
[password]]

Abbreviation

None

Options

This command takes the following options:

Option Description
-gc Requests an automatic binding to a global catalog (GC) domain controller.

This option has no effect if there’s a domain controller specified using the
server argument.

-write Requests an automatic binding to a writable domain controller. This
option has no effect if there’s a domain controller specified using the
server argument.

-
machine

Binds using the credentials for the ADEdit host computer.

Note that most computer accounts have only read permission, not write
permission for Active Directory. To use this option, you must have read
permission on the local computer’s keytab file and credentials cache. In
most cases, only the root user has this right.

Arguments

This command takes the following arguments:

• • • • • •

ADEdit Command Reference and Scripting Guide 105

Argument Type Description
[
server
]@domain

string Required. Specifies the domain to bind to.

If you want to specify a domain controller to connect to,
precede the domain with the name of the domain controller’s
server followed by the “@” symbol. If you don’t specify a
domain controller, bind performs an automatic binding to the
domain controller that ADEdit determines is most optimal for
binding.

[user] string Optional. Specifies the user name for logging on to the domain
controller.

If you don’t specify this argument and the -machine option is
also not present, ADEdit attempts to log on using your current
account credentials.

If you specify the -machine option, you cannot use this
argument.

[password] string Optional. Requires the user argument. Specifies the password
to use when logging on to the domain controller as user.

Return value

This command returns no value.

Examples

The following example binds ADEdit to the domain acme.com, logging in as
administrator with the password #3gEgh^&4:

bind acme.com administrator #3gEgh^&4

Note that a password that includes Tcl-special characters such as $ might
trigger character substitution that modifies the password. To ensure that a
password isn’t altered by the Tcl interpreter, enclose the password in braces
({}). For example:

bind acme.com maya,garcia {$m1l3s88}

• • • • • •

ADEdit command reference 106

Related commands

The following commands perform actions related to the bind command:

get_bind_info returns information about a domain to which ADEdit is
bound.

pop restores the context from the top of ADEdit’s context stack to
ADEdit.

push saves ADEdit’s current context to ADEdit’s context stack.

show returns the current context of ADEdit: its bound domains and its
currently selected objects.

clear_rs_env_from_role

Use the clear_rs_env_from_role command to remove the restricted shell
environment from the currently selected role that is stored in memory.

The clear_rs_env_from_role command does not modify the information
stored in Active Directory for the role. If you run this command using ADEdit
without saving the role to Active Directory, the change will have no effect on
the restricted shell environment stored in Active Directory.

You can only use the clear_rs_env_from_role command if the currently
selected zone is a classic4 zone. The command does not work in other types of
zones.

Zone type

Classic only

Syntax

clear_rs_env_from_role

• • • • • •

ADEdit Command Reference and Scripting Guide 107

Abbreviation

crse

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

clear_rs_env_from_role

This example removes the restricted shell environment from the current role.

Related commands

The following commands perform actions related to this command:

get_rs_envs returns a Tcl list of restricted shell environments.

list_rs_envs lists to stdout the restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

• • • • • •

ADEdit command reference 108

set_rs_env_for_role assigns a restricted shell environment to the current
role.

After you have a restricted shell environment stored in memory, you can use
the following commands to work with that: restricted shell environment:

delete_rs_env deletes the current restricted shell environment from
Active Directory and from memory.

get_rse_field reads a field value from the current restricted shell
environment.

save_rs_env saves the restricted shell environment to Active Directory.

create_computer_role

Use the create_computer_role command to create a new computer role in
Active Directory. The command does not store the new computer role in
memory nor set it as the currently selected ADEdit computer role. To manage
the computer role, you must select it using select_zone and then use zone
commands to work with the computer role’s fields.

ADEdit requires a valid license before the computer role is created. The
create_computer_role command does an implicit search. The first place it
looks is the ADEdit context for a valid license indicator (see the validate_
license command) for the forest. If an indicator is not in the context, the
command checks for a valid license as follows:

Bind to the global catalog (GC) domain controller, search the forest for
the license container and validate the license.

Bind to the current domain, search for the license container and validate
the license.

If it finds a valid license, it stores an indicator in the current context and
creates the new computer role. If it does not find a valid license, create_
computer_role reports “No valid license found” and exits. If the command
fails, use validate_license to validate the license container explicitly.

To associate role assignments with the new computer role, you must select
the computer role, then use new_role_assignment.

• • • • • •

ADEdit Command Reference and Scripting Guide 109

Zone type

Hierarchical only

Syntax

create_computer_role computer_role_path group_upn

Abbreviation

ccr

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
computer_
role_path

string Required. Specifies a path to the new computer role. The path
consists of the hosting zone’s distinguished name followed by a
slash and the name of the new computer role.

group_upn string Required. Specifies the user principal name (UPN) of a
computer group in Active Directory to associate with this
computer role. This computer group defines the set of
computers in which this computer role functions. The
computer group must be available within the computer role’s
host domain.

Return value

This command returns no value if it runs successfully.

• • • • • •

ADEdit command reference 110

Examples

The following example creates a new computer role named LinuxComputers

in the global zone of acme.com:

create_computer_role
{CN=global,CN=Zones,CN=Centrify,DC=acme,DC=com/LinuxCompute
rs} linux_computers@acme.com

The scope of the computer role is defined by the group named linux_

computers which is an Active Directory groups defined in acme.com. To work
with the new computer role, you must select it as a zone:

select_zone
“CN=global,CN=Zones,CN=Centrify,DC=acme,DC=com/LinuxCompute
rs”

Related commands

The following command retrieves the computer role from Active Directory
and stores it in memory so you can use other commands to work with it.

select_zone retrieves the computer role and stores it in memory.

After you have a computer role selected as a zone, you can use the following
commands to view and manage the computer role:

new_role_assignment creates a new role assignment for the selected
computer role.

list_role_assignments lists user role assignments for the selected
computer role.

get_role_assignments returns a Tcl list of user role assignments for the
selected computer role.

get_zone_field retrieves what computer group is associated with the
computer role.

set_zone_field sets what computer group is associated with the
computer role.

delete_zone deletes the selected computer role from Active Directory
and memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 111

create_zone

Use the create_zone command to create a new zone in Active Directory. The
command does not store the new zone in memory nor set it as the currently
selected ADEdit zone. To manage the zone, you must select it using select_

zone and then use zone commands.

This command can create different types of zones and the zones can use
different types of schemas, depending on the schema you are using for Active
Directory. Before the zone is created, however, ADEdit checks for a valid
license.

The create_zone command first checks the ADEdit context for a valid license
indicator for the forest. If an indicator is not found in the context, the
command checks for a valid license as follows:

Bind to the global catalog (GC) domain controller, search the forest for
the license container and validate the license.

Bind to the current domain, search for the license container and validate
the license.

If the command finds a valid license, it stores an indicator in the current
context and creates the new zone. If it does not find a valid license, create_
zone reports “No valid license found” and exits. If the command fails, use the
validate_license command to validate the license container explicitly.

When this command creates a zone, the zone contains predefined
roles such as “sftp” and “UNIX Login.” The zone does not, however,
contain the role “Windows Login” because ADEdit does not support
Windows rights.

Zone type

Classic and hierarchical

Syntax

create_zone [-ou] zone_type path [schema_type]

• • • • • •

ADEdit command reference 112

Abbreviation

cz

Options

This command takes the following option:

Option Description
-ou Creates the new zone as an organizational unit object. If not present, the

new zone is created as a container object.

Note that the parent container determines what type of object the zone
can be. If the parent container is a generic container object, the zone must
be a container object. If the parent container is an organizational unit
object, the zone can be either an organizational unit object or a container
object.

Arguments

This command takes the following arguments:

Argument Type Description
zone_type string Required. The possible values are:

tree specifies a hierarchical zone that can be a
parent or child zone.

classic3 specifies a classic zone that is compatible
with agent version 3 and later.

classic4 specifies a classic zone that is compatible
with agent version 4 and later.

computer specifies a computer-level zone that
consists of a single computer in a hierarchical zone.
This zone type is used to support computer-level
overrides for user and group profiles and role
assignments. It is not applicable in classic zones.

• • • • • •

ADEdit Command Reference and Scripting Guide 113

Argument Type Description
classic-computer specifies a computer-level zone
that consists of a single computer in a classic zone.
This zone type is used to enable you to assign a role
to a specific computer in classic zones. It is not
applicable in hierarchical zones.

path string Required. Specifies a path to the new zone. The path consists
of the new zone’s distinguished name (DN) and (if a computer
override) the name of the computer.

schema_
type

string Optional. Specifies the type of schema to use for the new zone.
The possible values are:

sfu specifies the Microsoft Services For UNIX
schema. This setting can be used for tree, classic3,
and classic4 zone types. If it’s used for a hierarchical
zone, it can only be the root of the zone hierarchy.

std specifies the dynamic schema. This setting can
be used for all zone types. This is the default
schema unless ADEdit detects the RFC2307 schema.

rfc specifies the RFC2307 schema.This setting can
be used for all zone types. This is the default
schema if ADEdit detects that RFC2307 is installed
and the domain is at Windows Server 2003
functional level.

If none of these values is present, the default is either std or
rfc as described above.

Return value

This command returns no value if it runs successfully.

Examples

The following examples illustrate how to create a classic zone, hierarchical
zone, and computer-specific zone in Centrify Server Suite 2012 and later.

• • • • • •

ADEdit command reference 114

Classic zone

The following command creates a classic zone named finance in the
Centrify organizational unit in the acme.com domain that uses the dynamic
schema (std):

The following command creates a classic zone named finance in the
Centrify organizational unit in the acme.com domain that uses the dynamic
schema (std):

create_zone classic4
“CN=finance,OU=Centrify,DC=acme,DC=com” std

Hierarchical zone

The following command creates a new hierarchical parent zone named
finance in the Zones container in the Centrify organizational unit in the
acme.com domain:

create_zone tree
“CN=finance,CN=Zones,OU=Centrify,DC=acme,DC=com” std

To make the finance zone a child zone within a global zone already created
in the same container, OU, and domain, you would next select finance to
make it the currently selected zone, then use set_zone_field (szf) to
specify the global zone as its parent, and the save finance. For example:

select_zone “CN=finance,CN=Zones,OU=UNIX,DC=acme,DC=com”
szf parent “CN=global,CN=Zones,OU=UNIX,DC=acme,DC=com”
save_zone

Computer-specific zone

The following command creates a computer-specific zone for the computer
srv1 in the apache zone, which is a child of the global zone, in the Zones

container in the Centrify organizational unit in the acme.com domain.

create_zone computer
svr1.acme.com@CN=apache,CN=global,CN=Zones,OU=Centrify,DC=a
cme,DC=com

• • • • • •

ADEdit Command Reference and Scripting Guide 115

Related commands

Before you use this command, you must bind to one or more Active Directory
domains. The following command enables you to store a newly created zone
in memory:

select_zone retrieves a zone from Active Directory and stores it in
memory.

After you have created a new zone and stored it in memory, you can use the
following commands to work with that zone:

delegate_zone_right delegates a zone use right to a specified user or
computer.

delete_zone deletes the selected zone from Active Directory and
memory.

get_child_zones returns a Tcl list of child zones, computer roles, or
computer zones.

get_zone_field reads a field value from the currently selected zone.

get_zone_nss_vars returns the NSS substitution variable for the selected
zone.

save_zone saves the selected zone with its current settings to Active
Directory.

set_zone_field sets a field value in the currently selected zone.

delegate_zone_right

Use the delegate_zone_right command to delegate an administrative right
for the currently selected zone to a security principal (user or group). Zone
rights allow a user or group to use and manage zone properties, including
computer-specific zone properties and computer roles.

Zone type

Classic and hierarchical

• • • • • •

ADEdit command reference 116

Syntax

delegate_zone_right right principal_upn

Abbreviation

None.

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
right string Required. Specifies the right to delegate. Possible values:

add_computer_role: The right to add
computer roles to the zone.

add_computer_zone: The right to add
computer-specific zones.

add_group: The right to add groups to the
zone.

add_nismap: The right to add NIS maps to the
zone.

add_remove_nismap_entry: The right to add
or remove NIS map entries.

add_user: The right to add users to the zone.

add_user_group_to_computer_zone: The right
to add user and group overrides to the
selected computer-specific zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 117

Argument Type Description
change_user: The right to modify user profiles
in the zone.

change_group: The right to modify group
profiles in the zone.

change_computer: The right to modify
computer profiles in the zone.

change_zone: The right to change zone
properties.

delegate_permission_for_computer_zone:
The right to delegate permissions to other
users for computer-specific zones.

right
(continued)

string
(continued)

delete_computer: The right to remove
computers from the zone.

delete_computer_role: The right to delete
computer roles in the zone.

delete_computer_zone: The right to delete
computer-specific zones.

delete_group: The right to remove groups
from the zone.

delete_user: The right to remove users from
the zone.

delete_user_group_from_computer_zone:
The right to delete user and group overrides
from the selected computer-specific zone.

delete_zone: The right to remove the zone.

enable_dz: The right to initialize authorization
(privilege elevation service) data. This right is
only applicable in classic zones.

import: The right to import users and groups
into the zone.

join: The right to join computers to the zone.

manage_role_assignments: The right to

• • • • • •

ADEdit command reference 118

Argument Type Description
modify the roles assigned in zones, computer-
specific zones, and computer roles.

manage_roles_and_rights: The right to modify
role definitions and access rights.

modify_computer_role: The right to modify
computer role entries. This right is not
applicable in classic zones.

modify_nismap_entry: The right to modify NIS
map entries.

modify_user_group_in_computer_zone: The
right to modify user and group overrides in the
selected computer-specific zone.

right
(continued)

string

(continued)

nisservers: The right to allow computers to
respond to NIS client requests.

remove_nismap: The right to remove NIS
maps.

principal_
upn

string Required. Specifies the user principal name (UPN) of a
user or group in Active Directory to delegate the specified
right to.

Return value

This command returns no value if it runs successfully.

Examples

delegate_zone_right add_user adam.avery@acme.com

This example delegates the right to add users to the currently selected zone
to the Active Directory user Adam Avery.

• • • • • •

ADEdit Command Reference and Scripting Guide 119

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
zone to work with:

create_zone creates a new zone in Active Directory.

get_zones returns a Tcl list of all zones within a specified domain.

select_zone retrieves a zone from Active Directory and stores it in
memory.

After you have a zone stored in memory, you can use the following commands
to work with that zone:

delegate_zone_right delegates a zone use right to a specified user or
computer.

delete_zone deletes the selected zone from Active Directory and
memory.

get_child_zones returns a Tcl list of child zones, computer roles, or
computer zones.

get_zone_field reads a field value from the currently selected zone.

get_zone_nss_vars returns the NSS substitution variable for the selected
zone.

save_zone saves the selected zone with its current settings to Active
Directory.

set_zone_field sets a field value in the currently selected zone.

delete_dz_command

Use the delete_dz_command command to delete the currently selected
privileged command from Active Directory and from memory. You cannot use
other commands to manage privileged commands after deletion because
there will be no currently selected command in memory.

• • • • • •

ADEdit command reference 120

Zone type

Classic and hierarchical

Syntax

delete_dz_command

Abbreviation

dldzc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

delete_dz_command

This example deletes the currently selected command from Active Directory
and from memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 121

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
UNIX command to work with:

get_dz_commands returns a Tcl list of UNIX commands in the current
zone.

list_dz_commands lists to stdout the UNIX commands in the current
zone.

new_dz_command creates a new UNIX command and stores it in
memory.

select_dz_command retrieves a UNIX command from Active Directory
and stores it in memory.

After you have a UNIX command stored in memory, you can use the following
commands to work with that command:

get_dzc_field reads a field value from the currently selected command.

save_dz_command saves the selected command with its current settings
to Active Directory.

set_dzc_field sets a field value in the currently selected command.

delete_local_group_profile

Use the delete_local_group_profile command to delete a local UNIX or
Linux group that has a profile defined in the current zone. When you delete a
group, the group’s zone object is deleted, but the group’s entry in the local
/etc/group file is retained.

Zone type

Hierarchical only.

• • • • • •

ADEdit command reference 122

Syntax

delete_local_group_profile group_name

Abbreviation

dllgp

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
group_
name

string Required. Specifies the UNIX name of the local group to delete
from the zone.

Return value

This command returns nothing if it runs successfully.

Examples

delete_local_group_profile marketing

This example deletes the zone object for the local group marketing. The entry
for marketing in the local /etc/group file is retained.

• • • • • •

ADEdit Command Reference and Scripting Guide 123

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

• • • • • •

ADEdit command reference 124

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

delete_local_user_profile

Use the delete_local_user_profile command to delete a local UNIX or
Linux user that has a profile defined in the current zone. When you delete a
user, the user’s zone object is deleted, but the user’s entry in the local
/etc/passwd file is retained.

Zone type

Hierarchical only.

Syntax

delete_local_user_profile user_name

Abbreviation

dllup

Options

This command takes no options.

• • • • • •

ADEdit Command Reference and Scripting Guide 125

Arguments

This command takes the following argument:

Argument Type Description
user_name string Required. Specifies the UNIX name of the local user to delete

from the zone.

Return value

This command returns nothing if it runs successfully.

Examples

delete_local_user_profile anton.splieth

This example deletes the zone object for the local user anton.splieth. The
entry for anton.splieth in the local /etc/passwd file is retained.

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

• • • • • •

ADEdit command reference 126

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

delete_map_entry

Use the delete_map_entry command to delete an entry from the currently
selected NIS map stored in memory. The delete_map_entry command
changes the NIS map in memory and in Active Directory. You do not need to
save the NIS map for the deleted entry to take effect in Active Directory.

• • • • • •

ADEdit Command Reference and Scripting Guide 127

Zone type

Not applicable

Syntax

delete_map_entry key:index

Abbreviation

dlme

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
key:index string Required. Specifies the key of the NIS map entry to delete

followed by a colon (:) and the index number of the key.

Return value

This command returns nothing if it runs successfully.

Examples

delete_map_entry calla:1

• • • • • •

ADEdit command reference 128

This example deletes the NIS map entry with the key value “calla” and index
number 1 from the currently selected NIS map.

Related commands

Before you use this command, you must have a currently selected NIS map
stored in memory. The following commands enable you to view and select the
NIS map to work with:

get_nis_maps returns a Tcl list of NIS maps in the currently selected
zone.

list_nis_maps lists to stdout all of the NIS maps in the currently selected
zone.

new_nis_map creates a new NIS map and stores it in memory.

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map’s entries:

get_nis_map or get_nis_map_with_comment returns a Tcl list of the map
entries in the currently selected NIS map.

get_nis_map_field reads a field value from the currently selected NIS
map.

list_nis_map or list_nis_map_with_comment lists to stdout the map
entries in the currently selected NIS map.

add_map_entry or add_map_entry_with_comment adds an map entry to
the currently selected NIS map.

delete_nis_map

Use the delete_nis_map command to delete the currently selected NIS map
from Active Directory and from memory. You cannot use other commands to
manage the NIS map after deletion because there will be no currently selected
map in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 129

Zone type

Not applicable

Syntax

delete_nis_map

Abbreviation

dlnm

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

delete_nis_map

This example deletes the currently selected NIS map from Active Directory
and from memory.

• • • • • •

ADEdit command reference 130

Related commands

Before you use this command, you must have a currently selected NIS map
stored in memory. The following commands enable you to view and select the
NIS map to work with:

get_nis_maps returns a Tcl list of NIS maps in the currently selected
zone.

list_nis_maps lists to stdout of all NIS maps in the currently selected
zone.

new_nis_map creates a new NIS map and stores it in memory.

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map’s entries:

add_map_entry or add_map_entry_with_comment adds an entry to the
currently selected NIS map.

delete_map_entry removes an entry from the currently selected NIS
map.

get_nis_map or get_nis_map_with_comment returns a Tcl list of the
entries in the currently selected NIS map.

get_nis_map_field reads a field value from the currently selected NIS
map.

list_nis_map or list_nis_map_with_comment lists to stdout of the entries
in the currently selected NIS map.

delete_object

Use the delete_object command to delete the currently selected Active
Directory object from Active Directory and from memory. You cannot use
other commands to manage the object after deletion because there will be no
currently selected Active Directory object in memory.

Do NOT use the delete_object command to delete an Active
Directory user or group that has been provisioned. If you use delete_

• • • • • •

ADEdit Command Reference and Scripting Guide 131

object to delete a provisioned user or group, you create orphan user
or group UNIX data objects. Instead, use the delete_zone_user or
delete_zone_group command. In addition, you would use the select_

zone_user and select_zone_group rather than select_object to
select the user or group. For information about displaying orphan
accounts, see the list_zone_users and list_zone_groups.

Zone type

Not applicable

Syntax

delete_object

Abbreviation

dlo

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit command reference 132

Examples

delete_object

This example deletes the currently selected Active Directory object from
Active Directory and from memory.

Related commands

Before you use this command, you must have a currently selected Active
Directory object stored in memory. The following commands enable you to
view and select the object to work with:

get_objects performs an LDAP search of Active Directory and returns a
Tcl list of the distinguished names of matching objects.

new_object creates a new Active Directory object and stores it in
memory.

select_object retrieves an object with its attributes from Active Directory
and stores it in memory.

After you have an Active Directory object stored in memory, you can use other
commands to work with that object’s attributes, or the following commands
to delete or save information for the object:

delete_sub_tree deletes an Active Directory object and all of its children
from Active Directory.

save_object saves the selected Active Directory object with its current
settings to Active Directory.

delete_pam_app

Use the delete_pam_app command to delete the currently selected PAM
application from Active Directory and from memory. You cannot use other
commands to manage the PAM application after deletion because there will
be no currently selected PAM application in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 133

Zone type

Classic and hierarchical

Syntax

delete_pam_app

Abbreviation

dlpam

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

delete_pam_app

This example deletes the currently selected PAM application from Active
Directory and from memory.

• • • • • •

ADEdit command reference 134

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. After you have a zone stored in memory, you can use the
following commands to view and select the PAM application to work with:

get_pam_apps returns a Tcl list of PAM application rights in the current
zone.

list_pam_apps lists to stdout all PAM application rights in the current
zone.

new_pam_app creates a new PAM application right and stores it in
memory.

select_pam_app retrieves a PAM application right from Active Directory
and stores it in memory

After you have a PAM application stored in memory, you can use the following
commands to work with that PAM application’s attributes, delete the PAM
application, or save information for the PAM application:

delete_pam_app deletes the selected PAM application right from Active
Directory and from memory.

get_pam_field reads a field value from the currently selected PAM
application right.

save_pam_app saves the selected PAM application right with its current
settings to Active Directory.

set_pam_field sets a field value in the currently selected PAM application
right.

delete_role

Use the delete_role command to delete the currently selected role from
Active Directory and from memory. You cannot use other commands to
manage the role after deletion because there will be no currently selected role
in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 135

Zone type

Classic and hierarchical

Syntax

delete_role

Abbreviation

dlr

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

delete_role

This example deletes the currently selected role from Active Directory and
from memory.

• • • • • •

ADEdit command reference 136

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout all roles in the currently selected zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with that role:

add_command_to_role adds a UNIX command to the currently selected
role.

add_pamapp_to_role adds a PAM application to the currently selected
role.

get_role_apps returns a Tcl list of the PAM applications associated with
the role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the role.

get_role_field reads a field value from the currently selected role.

list_role_rights lists to stdout all UNIX commands and PAM applications
associated with the role.

remove_command_from_role removes a UNIX command from the
currently selected role.

remove_pamapp_from_role removes a PAM application from the
currently selected role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the currently selected role.

• • • • • •

ADEdit Command Reference and Scripting Guide 137

delete_role_assignment

Use the delete_role_assignment command to delete the currently selected
role assignment from Active Directory and from memory. You cannot use
other commands to manage the role assignment after deletion because there
will be no currently selected role assignment in memory.

Zone type

Classic and hierarchical

Syntax

delete_role_assignment

Abbreviation

dlra

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit command reference 138

Examples

delete_role_assignment

This example deletes the currently selected role assignment from Active
Directory and from memory.

Related commands

Before you use this command, you must have a currently selected role
assignment stored in memory. The following commands enable you to view
and select the role assignment to work with:

get_role_assignments returns a Tcl list of role assignments in the current
zone.

list_role_assignments lists to stdout all role assignments in the currently
selected zone.

new_role_assignment creates a new role assignment and stores it in
memory.

select_role_assignment retrieves a role assignment from Active Directory
and stores it in memory.

After you have a role assignment stored in memory, you can use other
commands to work with that role assignment’s fields, or the following
commands to save information for the role assignment:

save_role_assignment saves the selected role assignment with its
current settings to Active Directory.

delete_rs_command

Use the delete_rs_command command to delete the currently selected
restricted shell command from Active Directory and from memory. After you
run this command, you cannot run subsequent ADEdit commands for
restricted shell commands because there will be no currently selected
restricted shell command available in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 139

Zone type

Classic only

Syntax

delete_rs_command

Abbreviation

dlrsc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

delete_rs_command

This example deletes the currently selected restricted shell command from
Active Directory and from memory.

• • • • • •

ADEdit command reference 140

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
restricted shell command to work with:

get_rs_commands returns a Tcl list of restricted shell commands in the
current zone.

list_rs_commands lists to stdout the restricted shell commands in the
current zone.

new_rs_command creates a new restricted shell command and stores it
in memory.

select_rs_command retrieves a restricted shell command from Active
Directory and stores it in memory.

After you have a restricted shell command stored in memory, you can use the
following commands to work with that restricted shell:

get_rsc_field reads a field value from the currently selected command.

save_rs_command saves the selected command with its current settings
to Active Directory.

set_rsc_field sets a field value in the currently selected command.

delete_rs_env

Use the delete_rs_env command to delete the currently selected restricted
environment from Active Directory and from memory. After you run this
command, you cannot run subsequent ADEdit commands for a restricted
shell environment because there will be no currently selected restricted shell
environment available in memory.

Zone type

Classic only

• • • • • •

ADEdit Command Reference and Scripting Guide 141

Syntax

delete_rs_env

Abbreviation

dlrse

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

delete_rs_env

This example deletes the currently selected RSE from Active Directory and
from memory.

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with restricted shell environments:

• • • • • •

ADEdit command reference 142

get_rs_envs returns a Tcl list of restricted shell environments.

list_rs_envs lists to stdout the restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

After you have a restricted shell environment stored in memory, you can use
the following commands to work with its fields:

get_rse_field reads a field value from the current restricted shell
environment.

save_rs_env saves the restricted shell environment to Active Directory.

set_rse_field sets a field value in the current restricted shell
environment.

delete_sub_tree

Use the delete_sub_tree command to delete an object and all of its child
objects from Active Directory. Only child objects that are in the same
container as the specified parent object are deleted. Child objects in other
containers are not deleted.

WARNING: This is a very powerful command, and can cause a lot of damage if
used incorrectly. It’s similar to running rm -rf * in UNIX.

In interactive mode, ADEdit prompts you for confirmation before executing
this command. If you use this command in a script, ADEdit does not prompt
for confirmation. You should use caution before using this command in a
script.

This command can be used on any Active Directory object, including a
container, OU, computer object, group or user. However, it is especially useful
for deleting a corrupted zone. You’d normally use select_zone and then
delete_zone to delete a zone. If the zone is damaged, though, select_zone
might not work. In that case, delete_sub_tree will do the job.

• • • • • •

ADEdit Command Reference and Scripting Guide 143

If the zone is a hierarchical zone, this command deletes only the child zones in
the same container as the parent zone. If there are any child zones in other
containers, they are not deleted.

Zone type

Classic and hierarchical

Syntax

delete_sub_tree dn

Abbreviation

None.

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
dn DN Required. Specifies the distinguished name of the object (with

all of its children) to remove from Active Directory.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit command reference 144

Examples

delete_sub_tree
“CN=marketing,CN=Zones,CN=Centrify,DC=acme,DC=com”

This example deletes the currently selected “marketing” zone with all of its
children from Active Directory.

Related commands

The following commands enable you to view and manage the Active Directory
object to work with:

delete_object deletes the selected Active Directory object from Active
Directory and from memory.

get_objects performs an LDAP search of Active Directory and returns a
Tcl list of the distinguished names of matching objects.

new_object creates a new Active Directory object and stores it in
memory.

save_object saves the selected Active Directory object with its current
settings to Active Directory.

select_object retrieves an object with its attributes from Active Directory
and stores it in memory.

The following commands enable you to view and manage Active Directory
object attributes:

add_object_value adds a value to a multi-valued field attribute of the
currently selected Active Directory object.

get_object_field reads a field value from the currently selected Active
Directory object.

remove_object_value removes a value from a multi-valued field attribute
of the currently selected Active Directory object.

set_object_field sets a field (attribute) value in the currently selected
Active Directory object.

• • • • • •

ADEdit Command Reference and Scripting Guide 145

delete_zone

Use the delete_zone command to delete the currently selected zone from
Active Directory and from memory. After you run this command, you cannot
run subsequent ADEdit commands for zones because there will be no
currently selected zone available in memory.

This command performs an LDAP sub-tree deletion operation. Only child
zones that are in the same container as the specified parent zone are deleted.
Child zones that are located in other containers are not deleted. Child zones
that are based on pointers defined in the child zone are not deleted. For more
information about deleting sub-tree objects, see delete_sub_tree.

In interactive mode, ADEdit prompts you for confirmation before executing
this command. If you use this command in a script, ADEdit does not prompt
for confirmation. You should use caution before using this command in a
script.

Zone type

Classic and hierarchical

Syntax

delete_zone

Abbreviation

dlz

Options

This command takes no options.

• • • • • •

ADEdit command reference 146

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

delete_zone

This example deletes the currently selected zone or computer role from Active
Directory and from memory.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
zone to work with:

create_zone creates a new zone in Active Directory.

get_zones returns a Tcl list of all zones within a specified domain.

select_zone retrieves a zone from Active Directory and stores it in
memory as the currently selected zone.

After you have a zone stored in memory, you can use the following commands
to work with that zone:

delegate_zone_right delegates an administrative right to a specified user
or group.

get_child_zones returns a Tcl list of child zones, computer roles, or
computer zones for the current zone.

get_zone_field reads a field value from the currently selected zone.

set_zone_field sets a field value in the currently selected zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 147

get_zone_nss_vars returns the NSS substitution variable for the selected
zone.

save_zone saves the selected zone with its current settings to Active
Directory.

delete_zone_computer

Use the delete_zone_computer command to delete the currently selected
zone computer profile from Active Directory and from memory. After you run
this command, you cannot run subsequent ADEdit commands for zone
computer profiles because there will be no currently selected zone computer
profile available in memory. This command only deletes the zone profile for
the computer. It does not delete the Active Directory computer account.

Zone type

Classic and hierarchical

Syntax

delete_zone_computer [-all]

Abbreviation

dlzc

Options

This command takes the following option:

Option Description
-all Removes the corresponding computer-specific zone profile if the selected

computer is a computer-specific override zone.

• • • • • •

ADEdit command reference 148

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

delete_zone_computer

This example deletes the currently selected zone computer profile from Active
Directory and from memory.

Related commands

Before you use this command, you must have a currently selected zone
computer profile stored in memory. The following commands enable you to
view and select the zone computer profile to work with:

get_zone_computers returns a Tcl list of the Active Directory names of all
zone computer profiles in the current zone.

list_zone_computers lists to stdout all zone computer profiles in the
current zone.

new_zone_computer creates a new zone computer profile and stores it
in memory.

select_zone_computer retrieves a zone computer profile from Active
Directory and stores it in memory.

After you have a zone computer stored in memory, you can use the following
commands to work with that zone computer:

get_zone_computer_field reads a field value from the currently selected
zone computer profile.

• • • • • •

ADEdit Command Reference and Scripting Guide 149

set_zone_computer_field sets a field value in the currently selected zone
computer profile.

save_zone_computer saves the selected zone computer profile with its
current settings to Active Directory.

delete_zone_group

Use the delete_zone_group command to delete the currently selected zone
group profile from Active Directory and from memory. After you run this
command, you cannot run subsequent ADEdit commands for zone groups
because there will be no currently selected zone group available in memory.

Zone type

Classic and hierarchical

Syntax

delete_zone_group

Abbreviation

dlzg

Options

This command takes no options.

Arguments

This command takes no arguments.

• • • • • •

ADEdit command reference 150

Return value

This command returns nothing if it runs successfully.

Examples

delete_zone_group

This example deletes the currently selected zone group from Active Directory
and from memory.

Related commands

Before you use this command, you must have a currently selected zone group
stored in memory. The following commands enable you to view and select the
zone group to work with:

get_zone_groups returns a Tcl list of the Active Directory names of all
zone groups in the current zone.

list_zone_groups lists to stdout all zone groups in the current zone.

new_zone_group creates a new zone group and stores it in memory.

select_zone_group retrieves a zone group from Active Directory and
stores it in memory.

After you have a zone group stored in memory, you can use the following
commands to work with that zone group:

get_zone_group_field reads a field value from the currently selected zone
group.

save_zone_group saves the selected zone group with its current settings
to Active Directory.

set_zone_group_field sets a field value in the currently selected zone
group.

• • • • • •

ADEdit Command Reference and Scripting Guide 151

delete_zone_user

Use the delete_zone_user command to delete the currently selected zone
user profile from Active Directory and from memory. After you run this
command, you cannot run subsequent ADEdit commands for zone users
because there will be no currently selected zone user available in memory.

Zone type

Classic and hierarchical

Syntax

delete_zone_user

Abbreviation

dlzu

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit command reference 152

Examples

delete_zone_user

deletes the currently selected zone user from Active Directory and from
memory.

Related commands

Before you use this command, you must have a currently selected zone user
stored in memory. The following commands enable you to view and select the
zone user to work with:

get_zone_users returns a Tcl list of the Active Directory names of all zone
users in the current zone.

list_zone_users lists to stdout all zone users in the current zone.

new_zone_user creates a new zone user and stores it in memory.

select_zone_user retrieves a zone user from Active Directory and stores
it in memory.

After you have a zone user stored in memory, you can use the following
commands to work with that zone user:

get_zone_user_field reads a field value from the currently selected zone
user.

save_zone_user saves the selected zone user with its current settings to
Active Directory.

set_zone_user_field sets a field value in the currently selected zone user.

dn_from_domain

Use the dn_from_domain command to convert a specified domain name in
dotted form (acme.com, for example) to a distinguished name (DN). This
conversion doesn’t require lookup in Active Directory. The command
performs a simple text conversion.

• • • • • •

ADEdit Command Reference and Scripting Guide 153

Zone type

Not applicable

Syntax

dn_from_domain domain_name

Abbreviation

dnfd

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
domain_
name

string Required. Specifies a dotted domain name (acme.com, for
example)

Return value

This command returns a domain name as a distinguished name.

Examples

dn_from_domain acme.com

This example returns the domain name in this form: dc=acme,dc=com

• • • • • •

ADEdit command reference 154

Related commands

The following commands convert information from one format to another:

domain_from_dn converts a domain’s distinguished name (DN) to a
dotted name.

dn_to_principal returns the sAMAccount@domain name or user principal
name (UPN) for a security principal.

dn_to_principal

Use the dn_to_principal command to specify the distinguished name (DN)
of a security principal (user, computer, or group). The command searches
Active Directory for the principal, and if the principal is found, the command
returns the sAMAccount@domain name of the principal. Optionally, you can
also use this command to return the user principal name (UPN) for the
principal.

Zone type

Not applicable

Syntax

dn_to_principal [-upn] principal_dn

Abbreviation

dntp

Options

This command takes the following option:

• • • • • •

ADEdit Command Reference and Scripting Guide 155

Option Description
-upn Returns the principal name in user principal name (UPN) format, not the

default sAMAccount@domain format.

Arguments

This command takes the following argument:

Argument Type Description
principal_
dn

string Required. Specifies the distinguished name (DN) of a security
principal.

Return value

This command returns the sAMAccount@domain name or (optionally) the user
principal name (UPN) of a security principal. If the command doesn’t find the
specified security principal in Active Directory, it presents a message that it
didn’t find the principal.

Examples

dn_to_principal cn=brenda butler,cn=users,dc=acme,dc=com

This example returns: brenda.butler@acme.com

Related commands

The following commands search for security principals in Active Directory:

principal_to_dn searches Active Directory for a user principal name
(UPN) and, if found, returns the corresponding distinguished name (DN).

principal_from_sid searches Active Directory for an SID and returns the
security principal associated with the SID.

• • • • • •

ADEdit command reference 156

domain_from_dn

Use the domain_from_dn command takes a distinguished name (DN) that
contains a domain and returns the domain name in dotted form (acme.com,
for example). This conversion doesn’t require lookup in Active Directory. The
command performs a simple text conversion.

Zone type

Not applicable

Syntax

domain_from_dn dn

Abbreviation

dfdn

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
dn string Required. Specifies a distinguished name that contains a

domain.

• • • • • •

ADEdit Command Reference and Scripting Guide 157

Return value

This command returns a domain name in dotted form such as acme.com. If
the distinguished name doesn’t contain domain component (DC) values, the
command returns a notice that the DC values are missing.

Examples

dfdn cn=johndoe,cn=users,dc=acme,dc=com

This example returns: acme.com

Related commands

The following command converts information from one format to another:

dn_from_domain converts a domain’s dotted name to a distinguished
name.

explain_sd

Use the explain_sd command to specify a security descriptor (SD) in security
descriptor description language (SDDL) form and returns a human-readable
form of the security descriptor.

Zone type

Not applicable

Syntax

explain_sd sddl_string

• • • • • •

ADEdit command reference 158

Abbreviation

None.

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
sddl_string string Required. Specifies a security descriptor in SDDL format.

Return value

This command returns text that describes the supplied security descriptor in
human-readable form.

Examples

explain_sd O:DAG:DAD:AI(A;;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;SY)
(A;;RCWDWOCCDCLCSWRPWPLOCR;;;DA)
(OA;;CCDC;bf967aba-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;bf967a9c-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;bf967aa8-0de6-11d0-a285-00aa003049e2;;PO)
(A;;RCLCRPLO;;;AU)(OA;;CCDC;4828cc14-1437-45bc-
9b07-ad6f015e5f28;;AO)(OA;CIIOID;RP;4c164200-20c0-11d0-
a768-00aa006e0529;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RP;4c164200-20c0-11d0-a768-
00aa006e0529;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)

• • • • • •

ADEdit Command Reference and Scripting Guide 159

(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a86-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a9c-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967aba-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RCLCRPLO;;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RCLCRPLO;;bf967a9c-
0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RCLCRPLO;;bf967aba-0de6-11d0-a285-
00aa003049e2;RU)
(OA;CIID;RPWPCR;91e647de-d96f-4b70-9557-d63ff4f3ccd8;;PS)
(A;CIID;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;EA)
(A;CIID;LC;;;RU)(A;CIID;SDRCWDWOCCLCSWRPWPLOCR;;;BA)

This example returns the security descriptor information in readable form:

Owner: Domain Admins
Group: Domain Admins
Dacl: inherit supported,
Allow | | delete,read SD,write DACL,change owner,create

child,delete child,list children,self write,read
property,write property,delete tree,list object,control
access, | | | System
Allow | | read SD,write DACL,change owner,create

child,delete child,list children,self write,read
property,write property,list object,control access, | | |
Domain Admins
Allow | | create child,delete child, | User | | Account

operators
Allow | | create child,delete child, | Group | | Account

operators
Allow | | create child,delete child, | Print-Queue | |

Print operators

• • • • • •

ADEdit command reference 160

Allow | | read SD,list children,read property,list
object, | | | Authenticated users
Allow | | create child,delete child, | inetOrgPerson | |

Account operators
Allow | inherit,inherit ony,inherited, | read property, |

User-Account-Restrictions | inetOrgPerson | pre win2k
Allow | inherit,inherit ony,inherited, | read property, |

User-Account-Restrictions | User | pre win2k
Allow | inherit,inherit ony,inherited, | read property, |

User-Logon | inetOrgPerson | pre win2k
Allow | inherit,inherit ony,inherited, | read property, |

User-Logon | User | pre win2k
Allow | inherit,inherit ony,inherited, | read property, |

Membership | inetOrgPerson | pre win2k
Allow | inherit,inherit ony,inherited, | read property, |

Membership | User | pre win2k
Allow | inherit,inherit ony,inherited, | read property, |

General-Information | inetOrgPerson | pre win2k
Allow | inherit,inherit ony,inherited, | read property, |

General-Information | User | pre win2k
Allow | inherit,inherit ony,inherited, | read property, |

RAS-Information | inetOrgPerson | pre win2k
Allow | inherit,inherit ony,inherited, | read property, |

RAS-Information | User | pre win2k
Allow | inherit,inherit ony,inherited, | read property, |

Token-Groups | Computer | Enterprise Domain Controllers
Allow | inherit,inherit ony,inherited, | read property, |

Token-Groups | Group | Enterprise Domain Controllers
Allow | inherit,inherit ony,inherited, | read property, |

Token-Groups | User | Enterprise Domain Controllers
Allow | inherit,inherit ony,inherited, | read SD,list

children,read property,list object, | | inetOrgPerson |
pre win2k
Allow | inherit,inherit ony,inherited, | read SD,list

children,read property,list object, | | Group | pre win2k
Allow | inherit,inherit ony,inherited, | read SD,list

children,read property,list object, | | User | pre win2k
Allow | inherit,inherited, | read property,write

property,control access, | Private-Information | | Self
Allow | inherit,inherited, | delete,read SD,write

DACL,change owner,create child,delete child,list
children,self write,read property,write property,delete
tree,list object,control access, | | | Enterprise Admins
Allow | inherit,inherited, | list children, | | | pre

win2k

• • • • • •

ADEdit Command Reference and Scripting Guide 161

Allow | inherit,inherited, | delete,read SD,write
DACL,change owner,create child,list children,self
write,read property,write property,list object,control
access, | | | Administrators

Related commands

The following commands enable you to work with security descriptor strings:

remove_sd_ace removes an access control entry (ACE) from a security
descriptor.

add_sd_ace adds an access control entry to a security descriptor.

set_sd_owner sets the owner of a security descriptor.

forest_from_domain

Use the forest_from_domain command to retrieve the forest name based on
the domain name. The command also stores the retrieved forest name in
memory.

Zone type

Not applicable

Syntax

forest_from_domain [-nocache] <domain>

Abbreviation

ffd

• • • • • •

ADEdit command reference 162

Options

This command takes the following option:

Option Description
nocache Use this option to force fetch the forest name from Active Directory

instead of reading the forest name from in memory.

Arguments

This command takes the following argument:

Argument Type Description
domain string Required. Specifies the domain for which you want to retrieve

the forest.

Return value

This command returns the forest name (in upper case text).

Examples

>forest_from_domain 5027f1d2.test

5027F1D1.TEST

>ffd 5027f1d2.test

5027F1D1.TEST

get_adinfo

Use the get_adinfo command to return information about the current join
state for the ADEdit host computer. The command returns information about
the joined domain, the joined zone, or the name the host computer is joined
under.

• • • • • •

ADEdit Command Reference and Scripting Guide 163

Zone type

Not applicable

Syntax

get_adinfo domain|zone|host

Abbreviation

adinfo

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
domain|zone|host string Required. The possible values are:

domain returns the name of the currently
joined domain.

zone returns the distinguished name of the
currently joined zone.

host returns the name under which the
ADEdit host computer is joined.

• • • • • •

ADEdit command reference 164

Return value

This command returns a domain name, zone name, or computer name
depending on the provided argument.

Examples

get_adinfo domain

This example returns the joined domain. For example: acme.com

get_adinfo zone

This example returns the path to the joined zone. For example:

CN=default,CN=Zones,CN=Centrify,CN=Program
Data,DC=acme,DC=com

Related commands

None.

get_bind_info

Use the get_bind_info command to return information about one of
ADEdit’s currently bound domains. The command can return the name of the
domain’s forest, the name of the server bound within the domain, the security
identifier (SID) of the domain, and the functional level of the domain or the
domain’s forest.

Zone type

Not applicable

• • • • • •

ADEdit Command Reference and Scripting Guide 165

Syntax

get_bind_info domain forest|server|sid|domain_level|forest_
level

Abbreviation

gbi

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
domain string Required. Specifies the name of the domain for

which to get information.

forest | server | sid |
domain_level | forest_
level

string Required. The possible values are:

forest returns the name of the forest
that contains the bound domain.

server returns the name of the domain
server to which ADEdit is bound in the
domain.

sid returns the SID (security identifier) of
the bound domain.

domain_level returns the functional
level of the bound domain, represented
by an integer value:

-1: unknown functional level

0: Windows 2000 Server

• • • • • •

ADEdit command reference 166

Argument Type Description
1: Windows Server 2003, interim level

2: Windows Server 2003

3: Windows Server 2008

4: Windows Server 2008 R2

5: Windows Server 2012

6: Windows Server 2012 R2

7: Windows Server 2016, preview

forest_level returns the functional level
of the forest that contains the bound
domain.

Return value

This command returns a forest name, server name, security identifier, or
functional level depending on the provided argument.

Examples

get_bind_info acme.com server

This example returns the name of the domain controller:
adserve02.acme.com

Related commands

The following commands perform actions related to this command:

bind binds ADEdit to a domain for subsequent ADEdit commands.

pop restores the context from the top of ADEdit’s context stack to
ADEdit.

push saves ADEdit’s current context to ADEdit’s context stack.

• • • • • •

ADEdit Command Reference and Scripting Guide 167

show returns the current context of ADEdit, including its bound domains
and its currently selected objects.

get_child_zones

Use the get_child_zones command to return a Tcl list of the child zones,
computer roles, and computer zones for the currently selected zone stored in
memory. The options to return child zones and computer roles are only
applicable when you are working with hierarchical zones.

In classic zones, you can use this command to return a Tcl list of classic-
computer zones under the currently selected classic zone. A classic-computer
zone is a special zone type that contains a single computer to enable
computer-level role assignments. The classic zone must have the
corresponding computer object and that computer must be identified as a
classic-computer zone to support computer-specific role assignments.

Because classic zones do not have child zones or computer roles, executing
get_child_zones with the -crole or -tree option without the -computer

option returns an empty list.

Zone type

Classic and hierarchical

Syntax

get_child_zones [-tree] [-crole] [-computer]

Abbreviation

gcz

Options

This command takes any of the following options:

• • • • • •

ADEdit command reference 168

Option Description
-tree Returns a Tcl list of the current zone’s child zones. If the currently

selected zone is a classic zone, this option is ignored.

-crole Returns a Tcl list of the current zone’s hosted computer roles. If the
currently selected zone is a classic zone, this option is ignored.

-
computer

Returns a Tcl list of the current zone’s computer-specific zones.

For classic zones, this option returns a list of classic-computer zones.

If you don’t specify an option and the currently selected zone is a hierarchical
zone, get_child_zones returns the complete list of child zones including
computer roles and computer-specific “zones” that enable computer-specific
overrides. If you don’t specify an option and the currently selected zone is a
classic zone, get_child_zones returns the list of classic-computer zones.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of child zones, computer roles, or computer-
specific zones depending on the options used.

Examples

get_child_zones

This example returns:

{CN=cz1,CN=Zones,CN=Centrify,CN=Program
Data,DC=eel,DC=nest}
{CN=cz2,CN=Zones,CN=Centrify,CN=Program
Data,DC=eel,DC=nest}

{CN=global,CN=Zones,CN=Centrify,CN=ProgramData,DC=eel,DC=ne
st/oracleServers}

• • • • • •

ADEdit Command Reference and Scripting Guide 169

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
zone to work with:

create_zone creates a new zone in Active Directory.

get_zones returns a Tcl list of all zones within a specified domain.

select_zone retrieves a zone from Active Directory and stores it in
memory as the currently selected zone.

After you have a zone stored in memory, you can use the following commands
to work with that zone:

delegate_zone_right delegates administrative rights to a specified user
or group.

delete_zone deletes the selected zone from Active Directory and
memory.

get_zone_field reads a field value from the currently selected zone.

get_zone_nss_vars returns the NSS substitution variable for the selected
zone.

save_zone saves the selected zone with its current settings to Active
Directory.

set_zone_field sets a field value in the currently selected zone.

get_dz_commands

Use the get_dz_commands command to check Active Directory and return a
Tcl list of UNIX command objects defined within the currently selected zone. If
executed in a script, this command does not output its list to stdout, and no
output appears in the shell where the script is executed. Use the list_dz_

commands command to output to stdout.

You can only use the get_dz_commands command if the currently selected
zone is a classic4 or hierarchical zones. The command does not work in other
types of zones.

• • • • • •

ADEdit command reference 170

Zone type

Classic and hierarchical

Syntax

get_dz_commands

Abbreviation

gdzc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of UNIX commands defined in the currently
selected zone.

Examples

get_dz_commands

This example returns the list of commands: root_any

• • • • • •

ADEdit Command Reference and Scripting Guide 171

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
UNIX command to work with:

list_dz_commands lists to stdout the UNIX commands in the current
zone.

new_dz_command creates a new UNIX command and stores it in
memory.

select_dz_command retrieves a UNIX command from Active Directory
and stores it in memory.

After you have a UNIX command stored in memory, you can use the following
commands to work with that command:

delete_dz_command deletes the selected command from Active
Directory and from memory.

get_dzc_field reads a field value from the currently selected command.

save_dz_command saves the selected command with its current settings
to Active Directory.

set_dzc_field sets a field value in the currently selected command.

get_dzc_field

Use the get_dzc_field command to return the value for a specified field
from the currently selected command object that is stored in memory.

The get_dzc_field command does not query Active Directory for the
command. If you change field values using ADEdit without saving the
command to Active Directory, the field value you retrieve using get_dzc_

field won’t match the same field value for the command stored in Active
Directory.

You can only use the get_dzc_field command if the currently selected zone
is a classic4 or hierarchical zone. The command does not work in other types
of zones.

• • • • • •

ADEdit command reference 172

Zone type

Classic and hierarchical

Syntax

get_dzc_field field

Abbreviation

gdzcf

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field string Required. Specifies the case-sensitive name of the field whose

value to retrieve. The possible values are:

description: Returns text describing the UNIX
command.

cmd: Returns the restricted shell command string
or strings.

path: Returns the path to the command’s location.

form: Returns an integer that indicates whether the
cmd and path strings use wild cards (0) or a regular
expression (1).

• • • • • •

ADEdit Command Reference and Scripting Guide 173

Argument Type Description
dzdo_runas: Returns a list of users and groups that
can run this command under dzdo version of sudo.
Users may be listed by user name or user ID (UID).

dzsh_runas: Returns a list of users and groups that
can run this command in a restricted shell
environment (dzsh). Users can be listed by user
name or UID. You cannot get this field value if the
selected zone is a classic4 zone.

keep: Returns a comma-separated list of
environment variables from the current user’s
environment to keep.

del: Returns a comma-separated list of
environment variables from the current user’s
environment to delete.

add: Returns a comma-separated list of
environment variables to add to the final set of
environment variables.

pri: Returns an integer that specifies the command
priority for the restricted shell command object.

umask: Returns an integer that defines who can
execute the command.

flags: Returns an integer that specifies a
combination of different properties for the
command.

createTime: Returns the time and date this
command was created, returned in generalized
time format.

modifyTime: Returns the time and date this
command was last modified, returned in
generalized time format.

dn: Returns the command’s distinguished name.

selinux_role: Returns the SELinux role used when
constructing a new security context for command

• • • • • •

ADEdit command reference 174

Argument Type Description
execution (tree zone only).

selinux_type: Returns the SELinux type used when
constructing a new security context for command
execution (tree zone only).

digest: Returns the SHA-2 digest to verify the file
checksum before command execution.

Note that selinux_role and selinux_type are only
supported on Red Hat Enterprise Linux systems and effective
only on systems with SELinux enabled and joined to a
hierarchical zone.

Getting the cmd and path field values

If you specify the cmd and path fields, the return value can be a string that
uses wild cards (*, ?, and !), or a regular expression. If the cmd and path strings
use wild cards, an asterisk (*) matches zero or more characters, a question
mark (?) matches exactly one character, and the exclamation mark (!) negates
matching of the specified string.

For both the cmd and path fields, the form field indicates whether the specified
string is interpreted as a regular expression or as a string that includes wild
cards.

Getting environment variable field values

If you specify the keep, del, or add field, the return value is a comma-
separated list of environment variables. The keep, del, and add fields control
the environment variables used by the commands specified by the cmd string.
The keep and del settings are mutually exclusive:

The keep field only takes effect if the flag 16 is included in the setting for
the flag field.

The del field only takes effect if the flag 16 is not included in the setting
for the flag field.

• • • • • •

ADEdit Command Reference and Scripting Guide 175

Any environment variables kept or deleted are in addition to the default set of
the user’s environment variables that are either retained or deleted. The
default set of environment variables to keep is defined in the dzdo.env_keep

configuration parameter in the centrifydc.conf file. The default set of
environment variables to delete is defined in the dzdo.env_delete

configuration parameter in the centrifydc.conf file.

The add field returns the environment variables added to the final set of
environment variables resulting from the keep or del fields.

Getting the command priority field value

If you specify the pri field, the return value indicates the command priority
when there are multiple matches for command strings in a command object.
If there are multiple commands specified by this command object, the pri field
specifies the specifies their relative priority. The higher the value returned by
this field, the higher the command’s priority.

Getting the umask field value

If you specify the umask field, the return value is a 3-digit octal value that
defines who can read, write, and execute the selected command object. The
three digits of the umask field specify the read, write, or execute permission
for the file owner, group, and other users. The left digit defines the owner
execution rights, the middle digit defines the group execution rights, and the
right digit defines execution rights for other users. Each digit is a combination
of binary flags, one flag for each right as follows:

4 is read

2 is write

1 is execute

These values are added together to define the rights available for each entity.
For example, a umask value of 600 indicates read and write permission (4+2)
for the owner, but no permissions for the group or other users. Similarly, a
umask value of 740 indicates read, write, execute permissions (4+2+1) for the
owner, read permissions for the group, but no permissions for other users.

• • • • • •

ADEdit command reference 176

Getting command properties from the flags field value

If you specify the flags field, the return value is an integer that defines a
combination of binary flags, with one flag for each of the following properties:

1—Prevents nested command execution. If this flag value is not set, nested
command execution is allowed.

2—Requires authentication with the user’s password.

4—Requires authentication with the run-as user’s password.

8—Preserves group membership. If this flag value is not set, group
membership is not preserved.

16—Resets environment variables for the command, deleting the variables
specified in the dzdo.env_delete parameter and keeping the variables
specified in the keep field. If this flag is not set, the command removes the
unsafe environment variables specified in the dzdo.env_delete parameter
along with any additional environment variables specified by the del field.

32—Requires multi-factor authentication to execute the command.

64—Prevents navigation up the path hierarchy when executing the command.

These values are added together to define the value for the flags field. For
example, a flags field value of 11 indicates that nested command execution is
not allowed (1), the command requires authentication using the user’s
password (2), and the user’s group membership should be preserved (8). The
value returned is the sum of these flags (1+2+8).

Return value

This command returns a field value, which varies in type depending on the
data type stored by the field.

Examples

get_dzc_field dzdo_runas

returns: root

• • • • • •

ADEdit Command Reference and Scripting Guide 177

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
UNIX command to work with:

get_dz_commands returns a Tcl list of UNIX commands in the current
zone.

list_dz_commands lists to stdout the UNIX commands in the current
zone.

new_dz_command creates a new UNIX command and stores it in
memory.

select_dz_command retrieves a UNIX command from Active Directory
and stores it in memory.

After you have a UNIX command stored in memory, you can use the following
commands to work with that command:

delete_dz_command deletes the selected command from Active
Directory and from memory.

save_dz_command saves the selected command with its current settings
to Active Directory.

set_dzc_field sets a field value in the currently selected command.

get_group_members

Use the get_group_members command to check the Active Directory group
membership for a specified group. You can use this command to return a Tcl
list of the users in a specified group in one of two ways:

With the -ad option to return a simplified list of the distinguished names
that are members of the specified group. The -ad option lists the users
and groups that are members of the specified group without recursively
expanding the group membership of any nested group.

Without the -ad option to return a complete list of users that are
members of the specified group. If you don’t specify the -ad option, the
command recursively expands the groups that are members of the
specified group to identify all of the users in any nested group.

• • • • • •

ADEdit command reference 178

Zone type

Not applicable

Syntax

get_group_members [-ad | -upn] group_UPN

Abbreviation

ggm

Options

This command takes the following options:

Option Description
-ad Returns the distinguished names for the users and groups that are

members of the specified group. This option does not expand the group
membership to list users who are members of nested groups.

-upn Returns user names in user principal name (UPN) format for all of the
users that are members of the specified group. This option expands the
group membership of the specified group to include users who are
members of nested groups.

If you don’t specify this option, a complete list of user names is returned
using the default sAMAccount@domain format.

Arguments

This command takes the following argument:

Argument Type Description
group_UPN string Required. Specifies the user principal name (UPN) of the group

to for which you want to return user membership.

• • • • • •

ADEdit Command Reference and Scripting Guide 179

Return value

This command returns a Tcl list of group members.

Examples

get_group_members poweradmins@acme.com

This example returns the complete list of users who are members of the
poweradmin@acme.com group, including users who are members of any
nested groups, using the sAMAccountName@domain.name format. For example:

martin.moore@acme.com rachel.roberts@acme.com
frank.smith@acme.com

The following example returns the distinguished names of the users and
groups that are members of the demo-qa-lab@acme.com group without listing
the members of any nested groups.

get_group_members -ad demo-qa-lab@acme.com

For example, this command returns the list of users and groups without
expanding the group membership for the LabAdmins and QA groups:

CN=LabAdmins,CN=Users,DC=acme,DC=com {CN=Chris
Howard,CN=Users,DC=acme,DC=com}
CN=QA,CN=Users,DC=acme,DC=com
CN=frank.smith,CN=UsersDC=acme,DC=com

Related commands

The following commands perform actions related to this command:

joined_get_user_membership checks Active Directory through adclient

and returns a Tcl list of groups that a user belongs to.

joined_user_in_group checks Active Directory through adclient to see if
a user is in a group.

get_effective_groups checks Active Directory and returns a Tcl list of
groups a user belongs to.

• • • • • •

ADEdit command reference 180

get_local_group_profile_field

Use the get_local_group_profile_field command to display the value of
the specified field for the currently selected local UNIX or Linux group that has
a profile defined in the current zone. Before executing this command, you
must select a local group by executing the select_local_group_profile

command.

Zone type

Hierarchical only.

Syntax

get_local_group_profile_field field_name

Abbreviation

glgpf

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
field_name Required. Specifies the local group field to retrieve. The data

type depends on the field. The possible values are:

gid: The numeric group identifier.

• • • • • •

ADEdit Command Reference and Scripting Guide 181

Argument Type Description
name: The UNIX name of the group.

member: The UNIX name of at least one group
member.

profileflag: The value of the group’s profile flag as
set in the group object in the zone. For the group to
be managed by the agent, the profile flag must be
set to 1 or 3.

If set to 1, the group profile is enabled. If the group
profile is complete and the profile flag is set to 1, the
profile will be installed or updated in /etc/group at the
next local account refresh interval.

If set to 3, the group profile is removed from
/etc/group at the next local account refresh interval.

dn: The distinguished name of the group.

createTime: The creation time of the group profile.

modifyTime: The most recent modification time of
the group profile.

You can also specify AIX extended attributes as the field to get
an extended attribute value for a group. Extended attribute
fields start with the aix. prefix. For example, the admin

extended attribute can be retrieved by specifying aix.admin
as the field.

Return value

This command returns the value of the specified field.

Examples

The following example returns the GID of the currently selected local group in
the zone.

get_local_group_profile_field gid

• • • • • •

ADEdit command reference 182

The following example returns the value of the profile flag for the currently
selected local group. In this example, the profile flag is 1, meaning that the
group profile in /etc/group will be updated with the latest settings from the
local account zone object at the next local account refresh interval.

get_local_group_profile_field profileflag

1

If the current group is on AIX, you can get group extended attributes and
values. For example, to find out if the current group is an administrative
group, you can get the admin extended attribute:

get_local_group_profile_field aix.admin

true

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 183

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

get_local_groups_profile

Use the get_local_groups_profile command to return a TCL list of profiles
for local groups that are defined in the currently selected zone.

Zone type

Hierarchical only.

Syntax

get_local_groups_profile

• • • • • •

ADEdit command reference 184

Abbreviation

glgp

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

If you run this command from the command line, it returns a TCL list of
profiles for local groups that are defined in the currently selected zone. The
list is sorted by group UNIX name.

If you run this command in a script, no output is returned to stdout, and no
output appears in the shell where the script is executed. To return output to
stdout from a script, use the list_local_groups_profile command.

Examples

The following example shows a TCL list of profiles for local groups that are
defined in the current zone.

get_local_groups_profile
lg001 lg002 lg003 lg005 lg006 lg007

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

• • • • • •

ADEdit Command Reference and Scripting Guide 185

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

• • • • • •

ADEdit command reference 186

get_local_user_profile_field

Use the get_local_user_profile_field command to display the value of
the specified field for the currently selected local UNIX or Linux user that has a
profile defined in the current zone. Before executing this command, you must
select a local user by executing the select_local_user_profile command.

Zone type

Hierarchical only.

Syntax

get_local_user_profile_field field_name

Abbreviation

glupf

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
field_name string Required. Specifies the local user profile field to retrieve. The

possible values include:

uid: The user’s numeric identifier.

gid: The GID of the user’s primary group.

• • • • • •

ADEdit Command Reference and Scripting Guide 187

Argument Type Description
shell: The local user’s default shell on the local
computer. Possible values are: /bin/bash,
/bin/csh, /bin/ksh, /bin/sh, /bin/tcsh, %

{shell}.

home: The local user’s default home directory on
the local computer.

gecos: General information about the local user
account.

uname: The UNIX name of the user.

dn: The distinguished name of the user.

createTime: The creation time of the user profile.

modifyTime: The most recent modification time of
the user profile.

profileflag: The value of the user’s profile flag as set
in the user object in the zone. For the user to be
managed by the agent, the profile flag must be set
to 1 , 2, or 3.

You can also specify AIX extended attributes as the field to get
an extended attribute value for a user. Extended attribute fields
start with the aix. prefix. For example, the admin extended
attribute can be retrieved by specifying aix.admin as the field.

Return value

This command returns the value of the specified field.

Examples

The following example returns the UID of the currently selected local user in
the zone.

get_local_user_profile_field uid

• • • • • •

ADEdit command reference 188

The following example returns the value of the profile flag for the currently
selected local user. In this example, the profile flag is 2, meaning that the user
profile in /etc/passwd will be updated with the latest settings from the local
account zone object at the next local account refresh interval, but the
password entry in /etc/passwd will be set to !! so that the user cannot log
into the local computer.

get_local_user_profile_field profileflag

2

For more information about the meaning of the profile flag value, see set_
local_user_profile_field.

You can also specify AIX extended attributes as the field to get an extended
attribute value for a user. Extended attribute fields start with the aix. prefix.
For example, the admin extended attribute can be retrieved by specifying
aix.admin as the field.

get_local_user_profile_field aix.admin

false

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 189

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

get_local_users_profile

Use the get_local_users_profile command to return a TCL list of profiles
for local users that are defined in the currently selected zone.

Zone type

Hierarchical only.

• • • • • •

ADEdit command reference 190

Syntax

get_local_users_profile

glup

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

If you run this command from the command line, it returns a TCL list of
profiles for local users that are defined in the currently selected zone. The list
is sorted by user UNIX name.

If you run this command in a script, no output is returned to stdout, and no
output appears in the shell where the script is executed. To return output to
stdout from a script, use the list_local_users_profile command.

Examples

The following example shows a TCL list of profiles for local users that are
defined in the current zone.

get_local_users_profile
db2011 db2012 lu001 lu002 lu003 lu004 lu006 lu007 lu008
lu009 lu012 lu013

• • • • • •

ADEdit Command Reference and Scripting Guide 191

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

• • • • • •

ADEdit command reference 192

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

get_nis_map

Use the get_nis_map command to return a Tcl list containing the entries for
the currently selected NIS map stored in memory. This command does not
return the contents of the comment field. If you want to retrieve the
comment, use get_nis_map_with_comment instead.

The get_nis_map command does not query Active Directory for this NIS map,
but changing map entries using add_map_entry and delete_map_entry

changes both selected NIS map in memory and the corresponding NIS map in
Active Directory so their contents should match.

Zone type

Not applicable

Syntax

get_nis_map

Abbreviation

gnm

Options

This command takes no options.

• • • • • •

ADEdit Command Reference and Scripting Guide 193

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of NIS map entries. Each entry contains:

The key

The instance number of the key (there may be multiple entries with the
same key)

The value

Each entry component is separated from the next by a colon (:).

Examples

get_nis_map

This example returns the list of map entries. For example:

{Finance:1: Hank@acme.com,jane@acme.com,joe@acme.com}
{Mktg:1: Mike@acme.com,Sue@acme.com}

Related commands

Before you use this command, you must have a currently selected NIS map
stored in memory. The following commands enable you to view and manage
NIS maps:

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

get_nis_maps returns a Tcl list of NIS maps in the currently selected
zone.

list_nis_maps lists to stdout all NIS maps in the currently selected zone.

new_nis_map creates a new NIS map and stores it in memory.

• • • • • •

ADEdit command reference 194

save_nis_map saves the selected NIS map with its current entries to
Active Directory.

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map’s entries:

add_map_entry or add_map_entry_with_comment adds an entry to the
currently selected NIS map.

delete_map_entry removes an entry from the currently selected NIS
map.

get_nis_map_with_comment returns a Tcl list of the entries in the
currently selected NIS map.

get_nis_map_field reads a field value from the currently selected NIS
map.

list_nis_map or list_nis_map_with_comment lists to stdout of the entries
in the currently selected NIS map.

get_nis_map_field

Use the get_nis_map_field command to return the value for a specified field
from the currently selected NIS map stored in memory. The get_nis_map_

field command does not query Active Directory for the NIS map. If you’ve
changed field values using ADEdit without saving the NIS map to Active
Directory, the field value you retrieve using get_nis_map_field won’t match
the same field value for the NIS map stored in Active Directory.

Zone type

Not applicable

Syntax

get_nis_map_field field

• • • • • •

ADEdit Command Reference and Scripting Guide 195

Abbreviation

gnmf

Options

This command takes no options.

Arguments

This command takes the following argument, which is case-sensitive:

Argument Type Description
field string Required. Specifies the case-sensitive name of the field whose

value to retrieve. The possible values are:

createTime: Specifies the time and date this NIS
map was created, returned in generalized time
format

modifyTime: Specifies the time and date this NIS
map was last modified, returned in generalized time
format

dn: Specifies the NIS map’s distinguished name

Return value

This command returns a field value, which varies in type depending on the
data type stored by the field.

Examples

get_nis_map_field createTime

This example returns the value of the createTime field. For example:
20110525163718.0Z

• • • • • •

ADEdit command reference 196

Related Commands

Before you use this command, you must have a currently selected NIS map
stored in memory. The following commands enable you to view and manage
NIS maps:

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

get_nis_maps returns a Tcl list of NIS maps in the currently selected
zone.

list_nis_maps lists to stdout all NIS maps in the currently selected zone.

new_nis_map creates a new NIS map and stores it in memory.

save_nis_map saves the selected NIS map with its current entries to
Active Directory.

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map’s entries:

add_map_entry or add_map_entry_with_comment adds an entry to the
currently selected NIS map.

delete_map_entry removes an entry from the currently selected NIS
map.

get_nis_maps or get_nis_map_with_comment returns a Tcl list of NIS
maps in the currently selected zone.

list_nis_map or list_nis_map_with_comment lists to stdout of the entries
in the currently selected NIS map.

get_nis_map_with_comment

Use the get_nis_map command to return a Tcl list containing the entries for
the currently selected NIS map stored in memory. This command includes the
comment field for map entries. The get_nis_map_with_comment command
does not query Active Directory for this NIS map, but changing map entries
using add_map_entry and delete_map_entry changes both selected NIS map

• • • • • •

ADEdit Command Reference and Scripting Guide 197

in memory and the corresponding NIS map in Active Directory so their
contents should match.

Zone type

Not applicable

Syntax

get_nis_map_with_command

Abbreviation

gnmwc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of NIS map entries. Each entry contains:

The key

The instance number of the key (there may be multiple entries with the
same key)

The value

The comment

• • • • • •

ADEdit command reference 198

Each entry component is separated from the next by a colon (:).

Examples

get_nis_map_with_comment

This example returns the map entries including comments:

{Finance:1: Hank@acme.com,jane@acme.com,joe@acme.com:
Finance dept staff}
{Mktg:1: Mike@acme.com,Sue@acme.com: Marketing dept staff}

Related commands

Before you use this command, you must have a currently selected NIS map
stored in memory. The following commands enable you to view and manage
NIS maps:

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

get_nis_maps returns a Tcl list of NIS maps in the currently selected
zone.

list_nis_maps lists to stdout all NIS maps in the currently selected zone.

new_nis_map creates a new NIS map and stores it in memory.

save_nis_map saves the selected NIS map with its current entries to
Active Directory.

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map’s entries:

add_map_entry or add_map_entry_with_comment adds an entry to the
currently selected NIS map.

delete_map_entry removes an entry from the currently selected NIS
map.

• • • • • •

ADEdit Command Reference and Scripting Guide 199

get_nis_map_field reads a field value from the currently selected NIS
map.

get_nis_maps returns a Tcl list of NIS maps in the currently selected
zone.

list_nis_map or list_nis_map_with_comment lists to stdout of the entries
in the currently selected NIS map.

get_nis_maps

Use the get_nis_maps command to check Active Directory and return a Tcl
list of NIS maps defined within the currently selected zone. If executed in a
script, this command does not output its list to stdout, and no output
appears in the shell where the script is executed. Use list_nis_maps to
output the list of NIS maps to stdout.

Zone type

Not applicable

Syntax

get_nis_maps

Abbreviation

gnms

Options

This command takes no options.

• • • • • •

ADEdit command reference 200

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of NIS maps defined in the currently selected
zone.

Examples

get_nis_maps

This example returns the list of NIS maps: Aliases Printers Services

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and manage
NIS maps:

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

list_nis_maps lists to stdout all NIS maps in the currently selected zone.

new_nis_map creates a new NIS map and stores it in memory.

save_nis_map saves the selected NIS map with its current entries to
Active Directory.

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the other commands
to work with that map’s entries.

• • • • • •

ADEdit Command Reference and Scripting Guide 201

get_object_field

Use the get_object_field command to return the value of a specified field
from the currently selected Active Directory object stored in memory. The
get_object_field command does not query Active Directory for the object. If
you change field values using ADEdit without saving the object to Active
Directory, the field value you retrieve using get_object_field won’t match
the same field value for the object stored in Active Directory.

Zone type

Not applicable

Syntax

get_object_field field

Abbreviation

gof

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
field string Required. Specifies the case-sensitive name of the field whose

value to retrieve. The possible values include any attribute that
can be defined for the type of object currently selected. Special

• • • • • •

ADEdit command reference 202

Argument Type Description
values are:

sid: The object’s security identifier.

guid: The object’s globally unique identifier.

sd: The object’s security descriptor.

createTime: The time and date this object was
created, returned in generalized time format.

modifyTime: The time and date this object was last
modified, returned in generalized time format.

dn: The object’s distinguished name.

Return value

This command returns a field value, which varies in type depending on the
data type stored by the field.

Examples

get_object_field guid

This example returns the globally unique identifier for an object. For example:

44918ee7-80bc-4741-95d3-dd189e235ab8

Related commands

Before you use this command, you must have a currently selected Active
Directory object stored in memory. The following commands enable you to
view and select the object to work with:

get_objects performs an LDAP search of Active Directory and returns a
Tcl list of the distinguished names of matching objects.

new_object creates a new Active Directory object and stores it in
memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 203

select_object retrieves an object with its attributes from Active Directory
and stores it in memory.

After you have an Active Directory object stored in memory, you can use the
following commands to work with that object’s attributes, delete the object, or
save information for the object:

add_object_value adds a value to a multi-valued field attribute of the
currently selected Active Directory object.

delete_object deletes the selected Active Directory object from Active
Directory and from memory.

delete_sub_tree deletes an Active Directory object and all of its children
from Active Directory.

get_object_field_names returns a Tcl list of the field names (attributes)
for the currently selected Active Directory object.

remove_object_value removes a value from a multi-valued field attribute
of the currently selected Active Directory object.

save_object saves the selected Active Directory object with its current
settings to Active Directory.

set_object_field sets a field value in the currently selected Active
Directory object.

get_object_field_names

Use the get_object_field_names command to return a Tcl list of the field
names for each of the fields—the object attributes—of the currently selected
Active Directory object. The get_object_field_names command does not
query Active Directory for the object’s field names but looks at the selected
object as it is stored in ADEdit memory.

Zone type

Not applicable

• • • • • •

ADEdit command reference 204

Syntax

get_object_field_names

Abbreviation

gofn

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of field names.

Examples

select_object “cn=amy adams,cn=users,dc=ajax,dc=com”
get_object_field_names

This example returns the field names associated with the selected user Amy
Adams:

_SID _dn _objectCategory _server accountExpires cn codePage
countryCode distinguishedName
gidNumber instanceType lastLogonTimestamp loginShell
msDS-MembersForAzRoleBL msSFU30NisDomain
nTSecurityDescriptor name objectCategory objectClass
objectGUID objectSid primaryGroupID
pwdLastSet sAMAccountName sAMAccountType uSNChanged
uSNCreated uid uidNumber unixHomeDirectory

• • • • • •

ADEdit Command Reference and Scripting Guide 205

userAccountControl userPrincipalName whenChanged
whenCreated

Related commands

Before you use this command, you must have a currently selected Active
Directory object stored in memory. The following commands enable you to
view and select the object to work with:

get_objects performs an LDAP search of Active Directory and returns a
Tcl list of the distinguished names of objects that match the search
criteria.

new_object creates a new Active Directory object and stores it in
memory.

select_object retrieves an object and its attributes from Active Directory
and stores it in memory.

After you have an Active Directory object stored in memory, you can use the
following commands to work with that object’s attributes, delete the object, or
save information for the object:

add_object_value adds a value to a multi-valued field attribute of the
currently selected Active Directory object.

delete_object deletes the selected Active Directory object from Active
Directory and from memory.

delete_sub_tree deletes an Active Directory object and all of its children
from Active Directory.

get_object_field reads a field value from the currently selected Active
Directory object.

remove_object_value removes a value from a multi-valued field attribute
of the currently selected Active Directory object.

save_object saves the selected Active Directory object with its current
settings to Active Directory.

set_object_field sets a field value in the currently selected Active
Directory object.

• • • • • •

ADEdit command reference 206

get_objects

Use the get_objects command to perform an LDAP search of Active
Directory and return a Tcl list of the distinguished names (DNs) of the objects
that match the search criteria. You specify a container in Active Directory
where the search begins and a standard LDAP filter that defines the objects
you’re searching for.

You can control the nature of the search through options that specify
whether to use the global catalog (GC) for a forest-wide search, the number of
levels deep for the search to go below the beginning container of the search,
and the maximum number of objects for the get_objects command to
return.

Zone type

Not applicable

Syntax

get_objects [-gc] [-depth one|sub] [-limit limit] [-f
forest] base filter

Abbreviation

go

Options

This command takes the following options:

Option Description
-gc Requests a forest-wide search using a global catalog. For this option to

work, ADEdit must be bound to a global catalog domain controller using
the bind command with the -gc option.

• • • • • •

ADEdit Command Reference and Scripting Guide 207

Option Description
If you don’t specify this option, the search is only within the currently
bound domains.

-depth
one |
sub

Specifies how deep to search. This option must be followed by one of two
values:

one: Specifies that the search will search only through objects
immediately below the container specified by the argument
base.

sub: Specifies that the search will be full-depth, starting at the
container specified by base and continuing through all sub-
containers below that level.

If you don’t specify this option, the search defaults to the value one.

-limit
limit

Limits the number of objects returned by the search to the positive integer
specified by limit.

If you don’t specify this option, the search returns all matching objects
without limit.

-f forest Specifies the forest to search.

If you bind ADEdit to multiple forests, you can use this option to identify a
specific forest to search for objects matching the criteria you specify.

Arguments

This command takes the following arguments:

Argument Type Description
base DN Required. Specifies the distinguished name of an Active

Directory container in which to start the search.

If you want to perform a forest-wide search using the global
catalog option but do not specify the forest to search, use an
empty string as the base argument. For example:

get_objects -gc -depth sub "" (cn=demo)

You should not use an empty string as the starting point for a
search if you bind to multiple forests. If you bind to multiple
forests, you should always specify the forest to search.

• • • • • •

ADEdit command reference 208

Argument Type Description
filter LDAP

filter
Required. A string that uses standard LDAP filter syntax to
specify criteria for the search.

Return value

This command returns a Tcl list of the distinguished names of the objects
matching the search criteria.

Examples

get_objects “cn=users,dc=acme,dc=com” (objectclass=*)

This example returns a list of distinguished name matching the objectclass

filter:

CN=Builtin,DC=acme,DC=com CN=Computers,DC=acme,DC=com
{OU=Domain Controllers,DC=acme,DC=com}
CN=ForeignSecurityPrincipals,DC=acme,DC=com
CN=Infrastructure,DC=acme,DC=com
CN=LostAndFound,DC=acme,DC=com
{CN=NTDS Quotas,DC=acme,DC=com}
{CN=Program Data,DC=acme,DC=com} CN=System,DC=acme,DC=com
CN=Users,DC=acme,DC=com

Related commands

The following commands enable you to view and select the object to work
with:

new_object creates a new Active Directory object and stores it in
memory.

select_object retrieves an object and its attributes from Active Directory
and stores it in memory.

After you have an Active Directory object stored in memory, you can use the
following commands to work with that object’s attributes, delete the object, or
save information for the object:

• • • • • •

ADEdit Command Reference and Scripting Guide 209

add_object_value adds a value to a multi-valued field attribute of the
currently selected Active Directory object.

delete_object deletes the selected Active Directory object from Active
Directory and from memory.

delete_sub_tree deletes an Active Directory object and all of its children
from Active Directory.

get_object_field reads a field value from the currently selected Active
Directory object.

remove_object_value removes a value from a multi-valued field attribute
of the currently selected Active Directory object.

save_object saves the selected Active Directory object with its current
settings to Active Directory.

set_object_field sets a field value in the currently selected Active
Directory object.

get_pam_apps

Use the get_pam_apps command to check Active Directory and return a Tcl
list of plug-in authentication module (PAM) applications defined within the
currently selected zone. If executed in a script, this command does not output
its list to stdout, and no output appears in the shell where the script is
executed. Use list_pam_apps to output the list of PAM applications to
stdout.

You can only use the get_pam_apps command to return information about
PAM applications if the currently selected zone is a classic4 or hierarchical
zones. The command does not work for other types of zones.

Zone type

Classic and hierarchical

Syntax

get_pam_apps

• • • • • •

ADEdit command reference 210

Abbreviation

gpam

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of PAM applications defined in the currently
selected zone. Each element in the string is the name of a PAM application.

Examples

get_pam_apps

This example returns all of the PAM application rights for the selected zone:

dzssh-all dzssh-direct-tcpip dzssh-exec dzssh-scp dzssh-
sftp dzssh-shell dzssh-subsystem dzssh-tcpip-forward dzssh-
tunnel dzssh-x11-forwarding login-all ssh sshd

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. After you have a zone stored in memory, you can use the
following commands to view and select the PAM application to work with:

list_pam_apps lists to stdout the PAM application rights in the current
zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 211

new_pam_app creates a new PAM application right and stores it in
memory.

select_pam_app retrieves a PAM application from Active Directory and
stores it in memory.

After you have a PAM application stored in memory, you can use the following
commands to work with that PAM application’s attributes, delete the PAM
application, or save information for the PAM application:

delete_pam_app deletes the selected PAM application from Active
Directory and from memory.

get_pam_field reads a field value from the currently selected PAM
application.

save_pam_app saves the selected PAM application with its current
settings to Active Directory.

set_pam_field sets a field value in the currently selected PAM application.

get_pam_field

Use the get_pam_field command to return the value of a specified field for
the currently selected plug-in authentication module (PAM) application object
stored in memory. The get_pam_field command does not query Active
Directory for the PAM application. If you change field values using ADEdit
without saving the PAM application to Active Directory, the field value you
retrieve using get_pam_field won’t match the same field value for the PAM
application stored in Active Directory.

You can only use the get_pam_field command if the currently selected zone
is a classic4 or hierarchical zone. The command does not work in other types
of zones.

Zone type

Classic and hierarchical

• • • • • •

ADEdit command reference 212

Syntax

get_pam_field field

Abbreviation

gpf

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
field string Required. Specifies the case-sensitive name of the field whose

value to retrieve. The possible values are:

application: The name of the application allowed to
use adclient’s PAM authentication service. The
name can be literal, or it can contain ? or * wildcard
characters to specify multiple applications.

description: Text describing the PAM application.

createTime: The time and date this PAM application
was created, returned in generalized time format.

modifyTime: The time and date this PAM
application was last modified, returned in
generalized time format.

dn: the PAM application’s distinguished name.

• • • • • •

ADEdit Command Reference and Scripting Guide 213

Return value

This command returns a field value. The data type for this value depends on
the field specified.

Examples

get_pam_field application

This example returns the contents of the application field:

ftp

The selected PAM application object specifies ftp can authenticate using
adclient.

Related commands

Before you use this command, you must have a currently selected PAM
application object stored in memory. The following commands to view and
select the PAM application to work with:

get_pam_apps returns a Tcl list of PAM application rights in the current
zone.

list_pam_apps lists to stdout the PAM application rights in the current
zone.

new_pam_app creates a new PAM application right and stores it in
memory.

select_pam_app retrieves a PAM application right from Active Directory
and stores it in memory.

After you have a PAM application stored in memory, you can use the following
commands to work with that PAM application’s attributes, delete the PAM
application, or save information for the PAM application:

delete_pam_app deletes the selected PAM application right from Active
Directory and from memory.

• • • • • •

ADEdit command reference 214

get_pam_field reads a field value from the currently selected PAM
application right.

save_pam_app saves the selected PAM application right with its current
settings to Active Directory.

set_pam_field sets a field value in the currently selected PAM application
right.

get_parent_dn

Use the get_parent_dn command to specify an LDAP path using a
distinguished name (DN) and return the parent of the path. This command
removes the first element from the distinguished name and returns the rest
of the DN.

Zone type

Not applicable

Syntax

get_parent_dn DN

Abbreviation

gpd

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit Command Reference and Scripting Guide 215

Argument Type Description
DN string Required. Specifies a distinguished name.

Return value

This command returns a distinguished name that is the parent of the supplied
distinguished name.

Examples

get_parent_dn CN=global,CN=Zones,CN=Centrify,DC=acme,DC=com

This example returns: CN=Zones,CN=Centrify,DC=acme,DC=com

Related commands

The following command performs actions related to this command:

get_rdn returns the relative distinguished name of a specified LDAP path.

get_pending_zone_groups

Use the get_pending_zone_groups command to check Active Directory and
return a Tcl list of pending import groups for the currently selected zone.
Pending import groups are group profiles that have been imported from
Linux or UNIX computers, but not yet mapped to any Active Directory group. If
executed in a script, this command does not output its list to stdout, and no
output appears in the shell where the script is executed. Use list_pending_

zone_groups to output the list to stdout.

Zone type

Classic and hierarchical

• • • • • •

ADEdit command reference 216

Syntax

get_pending_zone_groups

Abbreviation

gpzg

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of pending import group profiles that have
been imported into the currently selected zone. Each entry in the list contains
the following fields, separated by colons (:):

Distinguished name (DN) of the pending import group as it is stored in
Active Directory. The distinguished name for each pending import group
includes a prefix that consists of “PendingGroup” and the globally unique
identifier (GUID) for the group.

UNIX group name.

Numeric group identifier (GID).

Examples

get_pending_zone_groups

The command returns output in the form of:

• • • • • •

ADEdit Command Reference and Scripting Guide 217

DN:group_name:gid

This sample command might return output similar to the following:

CN=PendingGroup_573135e7-edd9-46b9-9cbd-
c839570a90c8,CN=Groups, CN=bean_
pz,CN=Zones,CN=Centrify,DC=win2k3,DC=test:root:0
CN=PendingGroup_7878065a-4d2f-4749-8f3b-
6ffe24303f6a,CN=Groups, CN=bean_
pz,CN=Zones,CN=Centrify,DC=win2k3,DC=test:unixgrp:5000

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following command performs actions related to this
command:

select_object retrieves the specified Active Directory object and its
attributes from Active Directory and stores the object in memory.

get_object_field enables you to view and work with the pending import
group.

get_pending_zone_users

Use the get_pending_zone_users command to check Active Directory and
return a Tcl list of pending import users for the currently selected zone.
Pending import users are user profiles that have been imported from Linux or
UNIX computers, but not yet mapped to any Active Directory user. If executed
in a script, this command does not output its list to stdout, and no output
appears in the shell where the script is executed. Use list_pending_zone_

users to output the list to stdout.

Zone type

Classic and hierarchical

• • • • • •

ADEdit command reference 218

Syntax

get_pending_zone_users

Abbreviation

gpzu

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of pending import user profiles that have
been imported into the currently selected zone. Each entry in the list contains
the following fields, separated by colons (:):

Distinguished name (DN) of the pending import user as it is stored in
Active Directory. The distinguished name for each pending import user
includes a prefix that consists of “PendingUser” and the globally unique
identifier (GUID) for the user.

UNIX user name.

Numeric user identifier (UID).

Numeric primary group identifier (GID).

Personal information from the GECOS field.

Home directory.

Default login shell.

• • • • • •

ADEdit Command Reference and Scripting Guide 219

Examples

get_pending_zone_users

This sample command might return output similar to the following:

CN=PendingUser_09024f3a-6abc-4666-a127-
722f9fe0e0bf,CN=Users,CN=finance,
CN=Zones,CN=Centrify,DC=win2k3,DC=test:root:0:0:root:/root:
/bin/bash
CN=PendingUser_0b9fe038-1325-438f-8529-
cb190ab5914a,CN=Users,CN=finance,
CN=Zones,CN=Centrify,DC=win2k3,DC=test:bean:6001:5000:bean.
zhang:/home/bean:/bin/bash

Before you use this command, you must have a currently selected zone
stored in memory. The following command performs actions related to this
command:

select_object retrieves the specified Active Directory object and its
attributes from Active Directory and stores the object in memory.

get_object_field enables you to view and work with the pending import
group.

get_pwnam

Use the get_pwnam command to look up a UNIX user name in the
/etc/passwd file on the ADEdit host computer. If there’s an entry for the
specified user name, the command returns the profile values of that entry as
a Tcl list. The get_pwnam command uses the NSS layer to perform the lookup
operation. You can use the command to look up information for any user in
the /etc/passwd file, including root.

Zone type

Not applicable

• • • • • •

ADEdit command reference 220

Syntax

get_pwnam unix_name

Abbreviation

gpn

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
unix_name string Required. Specifies the UNIX user name to search for in the

/etc/passwd file.

Return value

This command returns a Tcl list of user profile attributes for a specified user if
the specified user name is found in the local /etc/passwd file. If the command
doesn’t find the specified user, it a “User not found” message.

Examples

get_pwnam adam

This example returns the profile for the UNIX user adam:

adam x 500 500 {Adam Andrews} /home/adam /bin/bash

• • • • • •

ADEdit Command Reference and Scripting Guide 221

Related commands

The following command performs actions related to this command:

getent_passwd returns a Tcl list of all entries in the local /etc/passwd
file.

get_rdn

Use the get_rdn command to specify an LDAP path using a distinguished
name (DN) and return the relative distinguished name. This command returns
only the first element of the supplied distinguished name.

Zone type

Not applicable

Syntax

get_rdn DN

Abbreviation

grdn

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit command reference 222

Argument Type Description
DN string Required. Specifies a distinguished name.

Return value

This command returns the first element of the supplied distinguished name.

Examples

get_rdn CN=global,CN=Zones,CN=Centrify,DC=acme,DC=com

This example returns: CN=global

Related commands

The following command performs actions related to this command:

get_parent_dn returns the parent distinguished name of a specified
LDAP path.

get_role_apps

Use the get_role_apps command to return a Tcl list of PAM application rights
associated with the currently selected role.

The get_role_apps command does not query Active Directory for the role. If
you change the PAM applications associated with the current role using
ADEdit without saving the role to Active Directory, the PAM applications you
retrieve using get_role_apps won’t match the same PAM applications for the
role as stored in Active Directory.

You can only use the get_role_apps command if the currently selected zone
is a classic4 or hierarchical zone. The command does not work in other types
of zones.

• • • • • •

ADEdit Command Reference and Scripting Guide 223

Zone type

Classic and hierarchical

Syntax

get_role_apps

Abbreviation

grap

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of PAM applications associated with the
currently selected role. Each PAM application in the list shows the application
name followed by a slash (/) and the zone in which the PAM application is
defined.

Examples

get_role_apps

This example returns the list of PAM applications for the currently selected
role: ftp/cz1

• • • • • •

ADEdit command reference 224

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands to view and select the role to work with:

get_roles returns a Tcl list of roles in the currently selected zone.

list_roles lists to stdout the roles in the currently selected zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with that role’s attributes, delete the role, or save information for the
role:

add_command_to_role adds a UNIX command to the currently selected
role.

add_pamapp_to_role adds a PAM application to the currently selected
role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_commands returns a Tcl list of the UNIX commands associated
with the currently selected role.

get_role_field reads a field value from the currently selected role.

list_role_rights returns a list of all UNIX commands and PAM applications
associated with the currently selected role.

remove_command_from_role removes a UNIX command from the
currently selected role.

remove_pamapp_from_role removes a PAM application from the
currently selected role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the currently selected role.

• • • • • •

ADEdit Command Reference and Scripting Guide 225

get_role_assignment_field

Use the get_role_assignment_field command to return the value for a
specified field from the currently selected role assignment stored in memory.
The get_role_assignment_field command does not query Active Directory
for the role assignment. If you change field values using ADEdit without saving
the role assignment to Active Directory, the field value you retrieve using get_

role_assignment_field won’t match the same field value for the role
assignment stored in Active Directory.

You can only use the get_role_assignment_field command if the currently
selected zone is a classic4 or hierarchical zone. The command does not work
in other types of zones.

Zone type

Classic and hierarchical

Syntax

get_role_assignment_field field

Abbreviation

graf

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit command reference 226

Argument Type Description
field string Required. Specifies the case-sensitive name of the field whose

value to retrieve. The possible values are:

assignee: Returns user display name in format specific to type
of logged in user.

customAttr: Returns the custom text strings set for the role
assignment.

customAttr: Returns the custom text strings set for the role
assignment.

description: Returns the description for the role assignment.

dn: Returns the role assignment’s distinguished name.

from: Returns the starting date and time for the role
assignment.

The start and end dates and times are expressed in standard
UNIX time. You can use the Tcl clock command to manipulate
these values. A value of 0 indicates no date or time is set for
the role assignment.

modifyTime: Returns the time and date this role assignment
was last modified, returned in generalized time format.

ptype: Returns a letter or symbol that indicates the account
type associated with a role assignment. You can use the
explain_ptype command to translate the returned value into a
text string that describes the account type.

role: Returns the name of the role and the zone in which the
role is defined.

to: Returns the ending date and time for the role assignment.

Return value

This command returns a field value. The data type depends on the field
specified.

• • • • • •

ADEdit Command Reference and Scripting Guide 227

Examples

This example returns the role name (root) and the zone where the role is
defined (global):

get_role_assignment_field role

root/global

This example returns the assignee display name in the appropriate format.

get_role_assignment_field assignee

For AD user/group:

CN=dc1,CN=Users,DC=sayms,DC=local

For trusted forest AD user/group:

CN=S-1-5-21-4259971489-770964042-439865176-
1106,CN=ForeignSecurityPrincipals,DC=sayms,DC=local

For local uid:

#56789@localhost

For local user:

localuser1@localhost

For local group:

%localgroup1@localhost

Related commands

Before you use this command, you must have a currently selected role
assignment stored in memory. The following commands to view and select
the role assignment to work with:

get_role_assignments

Use the get_role_assignments command to check Active Directory and
return a Tcl list of role assignments defined within the currently selected zone.
If executed in a script, this command does not output its list to stdout, and no
output appears in the shell where the script is executed. Use list_role_

assignments to output the list to stdout.

• • • • • •

ADEdit command reference 228

If you do not specify an option, the command returns the current users and
groups in the zone with a role assignment.

You can only use the get_role_assignments command if the currently
selected zone is a classic4 or hierarchical zone. The command does not work
in other types of zones.

Zone type

Classic and hierarchical

Syntax

get_role_assignments [-upn] [-user] [-group] [-invalid]

Abbreviation

gra

Options

This command takes any one of the following options:

Option Description
-upn Returns user names in user principal name (UPN) format, not the default

sAMAccount@domain format.

-user Returns a Tcl list of the current users in the zone with a role assignment.

-group Returns a Tcl list of the current groups in the zone with a role assignment.

-invalid Returns a Tcl list of any invalid role assignments in the zone.

For example, this option would return role assignment for a group or user
that no longer exists.

• • • • • •

ADEdit Command Reference and Scripting Guide 229

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of role assignments defined in the currently
selected zone. Each role assignment includes the sAMAccount@domain name
or the user principal name of the user or group to whom the role is assigned,
the name of the role assigned, and the zone in which the role is defined. These
three pieces of data are separated from each other by a slash (/).

Examples

get_role_assignments

This example returns the list of role assignments:

poweradmins@acme.com/root/global proj_
admins@acme.com/login/global

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. After you have a zone stored in memory, you can use the
following commands to view and select the role assignment to work with:

list_role_assignments lists to stdout the role assignments in the current
zone.

new_role_assignment creates a new role assignment and stores it in
memory.

select_role_assignment retrieves a role assignment from Active Directory
and stores it in memory.

After you have a role assignment stored in memory, you can use the following
commands to work with that role assignment’s attributes, delete the role
assignment, or save information for the role assignment:

• • • • • •

ADEdit command reference 230

delete_role_assignment deletes the selected role assignment from Active
Directory and from memory.

get_role_assignment_field reads a field value from the currently selected
role assignment.

save_role_assignment saves the selected role assignment with its
current settings to Active Directory.

set_role_assignment_field sets a field value in the currently selected role
assignment.

get_role_commands

Use the get_role_commands command to return a Tcl list of UNIX commands
associated with the currently selected role. The get_role_commands

command does not query Active Directory for the role. If you change
commands associated with the current role using ADEdit without saving the
role to Active Directory, the commands you retrieve using get_role_

commands won’t match the same commands for the role stored in Active
Directory.

You can only use the get_role_commands command if the currently selected
zone is a classic4 or hierarchical zone. The command does not work in other
types of zones.

Zone type

Classic and hierarchical

Syntax

get_role_commands

Abbreviation

grc

• • • • • •

ADEdit Command Reference and Scripting Guide 231

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of commands associated with the currently
selected role. Each command in the list shows the command name followed
by a slash (/) and the zone in which the command is defined.

Examples

get_role_commands

This example returns the list of commands:

pwd/global ls/global cd/childzone1

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout the roles in the current zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with that role’s attributes, delete the role, or save information for the
role:

• • • • • •

ADEdit command reference 232

add_command_to_role adds a UNIX command to the currently selected
role.

add_pamapp_to_role adds a PAM application to the currently selected
role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM applications associated with
the currently selected role.

get_role_field reads a field value from the currently selected role.

list_role_rights returns a list of all UNIX commands and PAM applications
associated with the currently selected role.

remove_command_from_role removes a UNIX command from the
currently selected role.

remove_pamapp_from_role removes a PAM application from the
currently selected role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the currently selected role.

get_role_field

Use the get_role_field command to return the value for a specified field
from the currently selected role stored in memory. The get_role_field

command does not query Active Directory for the role. If you change field
values using ADEdit without saving the role to Active Directory, the field value
you retrieve using get_role_field won’t match the same field value for the
role stored in Active Directory.

You can only use the get_role_field command if the currently selected zone
is a classic4 or hierarchical zone. The command does not work in other types
of zones.

Zone type

Classic and hierarchical

• • • • • •

ADEdit Command Reference and Scripting Guide 233

Syntax

get_role_field field

Abbreviation

grf

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
field string Required. Specifies the case-sensitive name of the field whose

value to retrieve.

The possible field values are:

allowLocalUser: Returns true or false depending on whether local users
can be assigned to the role. You cannot get this field value if the selected
zone is a classic4 zone.

AlwaysPermitLogin: Returns true or false depending on whether
“rescue rights” are configured for the role. You cannot get this field value
if the selected zone is a classic zone.

auditLevel: Returns the auditing level configured for the role. Roles can
be configured without auditing (not requested), to audit if possible, or to
have auditing required. You cannot get this field value if the selected
zone is a classic4 zone.

createTime: Returns the time and date this role was created in
generalized time format.

customAttr: Returns the custom text strings set for the role.

• • • • • •

ADEdit command reference 234

description: Returns the text string that describes the role.

dn: Returns the role’s distinguished name.

modifyTime: Returns the time and date this role was last modified in
generalized time format.

sysrights: Returns the system rights granted to the role. This value is an
integer that represents a combination of binary flags, one for each
system right. You cannot get this field value if the selected zone is a
classic zone.

For more information about the value returned for system rights, see
Getting the system rights field for a role.

timebox: Returns the hours and days in the week when the role is
enabled. This value is a 42-digit hexadecimal number.

When represented in binary, each bit represents an hour of the week as
described in the Timebox value format

visible: Returns true or false depending on whether “User is visible” right
is configured for the role. You cannot get this field value if the selected
zone is a classic zone.

Getting the system rights field for a role

You can specify the sysrights field to return information about the system
rights that have been granted to the currently selected role. This field value is
an integer that represents a combination of binary flags, with one flag for
each of the following system rights:

1—Password login and non password (SSO) login are allowed.

2—Non password (SSO) login is allowed.

4—Account disabled in Active Directory can be used by sudo, cron, etc.

8—Log in with non-restricted shell.

16—Audit not requested/required.

32—Audit required.

64—Always permit to login.

128—Remote login access is allowed for Windows computers.

• • • • • •

ADEdit Command Reference and Scripting Guide 235

256—Console login access is allowed for Windows computers.

512—Require multi-factor authentication through the Centrify connector to
log on.

1024—PowerShell remote access is allowed

These values are added together to define the sysrights field value. For
example, a sysrights value of 6 indicates that the role is configured to allow
single sign-on login and to ignore disabled accounts (2+4). A value of 11
indicates that the most common UNIX system rights are enabled (1+2+8). A
value of 384 indicates that most common Windows system rights are enabled
(128+256).

Return value

This command returns a field value, which varies in type depending on the
data type stored by the field.

Examples

get_role_field timebox

This example returns the content of the timebox field:

00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0

This return value indicates that the role is enabled during all hours of the
weekdays, but none of the weekends.

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout the roles in the currently selected zone.

new_role creates a new role and stores it in memory.

• • • • • •

ADEdit command reference 236

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with that role’s attributes, delete the role, or save information for the
role:

add_command_to_role adds a UNIX command to the currently selected
role.

add_pamapp_to_role adds a PAM application to the currently selected
role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM applications associated with
the currently selected role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the currently selected role.

list_role_rights returns a list of all UNIX commands and PAM applications
associated with the currently selected role.

remove_command_from_role removes a UNIX command from the
currently selected role.

remove_pamapp_from_role removes a PAM application from the
currently selected role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the currently selected role.

get_role_rs_commands

Use the get_role_rs_commands command to return a Tcl list of the restricted
shell commands associated with the currently selected role.

The get_role_rs_commands command does not query Active Directory for the
restricted shell commands. If you change the restricted shell commands
associated with the current role using ADEdit without saving the role to Active

• • • • • •

ADEdit Command Reference and Scripting Guide 237

Directory, the commands you retrieve using get_role_rs_commands won’t
match the restricted shell commands that are stored in Active Directory.

You can only use get_role_rs_commands if the currently selected zone is a
classic4 zone. This command does not work in other types of zones.

Zone type

Classic only

Syntax

get_role_rs_commands

Abbreviation

grrsc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of restricted shell commands associated with
the currently selected role. Each restricted shell command in the list shows
the restricted shell command name followed by a slash (/) and the zone in
which the restricted shell command is defined.

• • • • • •

ADEdit command reference 238

Examples

get_role_rs_commands

This example returns : rse1-id2/c123 rse1-id1/c123

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout the roles in the currently selected zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with restricted shells:

get_role_rs_env returns the restricted shell environment from the
currently selected role.

get_role_rs_env

Use the get_role_rs_env command to return the restricted shell
environment from the currently selected role that is stored in memory.

The get_role_rs_env command does not query the data stored in Active
Directory for the role. If you change the restricted shell environment in ADEdit
without saving the role to Active Directory, the value you retrieve using get_

role_rs_env won’t match the same value for the role that is stored in Active
Directory.

You can only use the get_role_rs_env command if the currently selected
zone is a classic4 zone. The command does not work in other types of zones.

• • • • • •

ADEdit Command Reference and Scripting Guide 239

Zone type

Classic only

Syntax

get_role_rs_env

Abbreviation

grrse

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns the restricted shell environment of the currently
selected role if it runs successfully. If the currently selected role does not
require a restricted shell environment, the command returns nothing.

Examples

get_role_rs_env

This example returns the restricted shell environment if it exists for the
selected role:

rse1

• • • • • •

ADEdit command reference 240

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout the roles in the currently selected zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with restricted shells:

list_rs_envs lists to stdout the restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

save_rs_env saves the restricted shell environment to Active Directory.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

get_roles

Use the get_roles command to check Active Directory and return a Tcl list of
roles defined within the currently selected zone. If executed in a script, this
command does not output its list to stdout, and no output appears in the
shell where the script is executed. Use list_roles to output the list to
stdout.

You can only use the get_roles command if the currently selected zone is a
classic4 or hierarchical zone. The command does not work in other types of
zones.

Zone type

Classic and hierarchical

• • • • • •

ADEdit Command Reference and Scripting Guide 241

Syntax

get_roles

Abbreviation

getr

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of roles defined in the currently selected zone.

Examples

get_roles

This example returns the list of roles:

{Rescue - always permit login} scp sftp listed {UNIX Login}
{Windows Login} winscp

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with:

• • • • • •

ADEdit command reference 242

list_roles lists to stdout the roles in the currently selected zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with role:

add_command_to_role adds a UNIX command to the currently selected
role.

add_pamapp_to_role adds a PAM application to the currently selected
role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM applications associated with
the currently selected role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the currently selected role.

list_role_rights returns a list of all UNIX commands and PAM applications
associated with the currently selected role.

remove_command_from_role removes a UNIX command from the
currently selected role.

remove_pamapp_from_role removes a PAM application from the
currently selected role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the currently selected role.

get_rs_commands

Use the get_rs_commands command to return a Tcl list of restricted shell
commands that are defined for the currently selected zone. If you want to
return a list of restricted shell commands to stdout, use the list_rs_

commands command.

• • • • • •

ADEdit Command Reference and Scripting Guide 243

Zone type

Classic only

Syntax

get_rs_commands

Abbreviation

grsc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of restricted shell commands for the currently
selected zone.

Examples

get_rs_commands

This example returns output similar to this:

rse1-id1 rse1-id2 rse2-id1

• • • • • •

ADEdit command reference 244

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
restricted shell command to work with:

list_rs_commands lists to stdout the restricted shell commands in the
current zone.

new_rs_command creates a new restricted shell command and stores it
in memory.

select_rs_command retrieves a restricted shell command from Active
Directory and stores it in memory.

After you have a restricted shell command stored in memory, you can use the
following commands to work with that restricted shell:

delete_rs_command deletes the selected command from Active
Directory and from memory.

get_rsc_field reads a field value from the currently selected command.

save_rs_command saves the selected command with its current settings
to Active Directory.

set_rsc_field sets a field value in the currently selected command.

get_rs_envs

Use the get_rs_envs command to check Active Directory and return a list of
restricted environments that are defined within the currently selected zone. If
you want to return a list of restricted shell environment to stdout, use the
list_rs_envs command.

Zone type

Classic only

• • • • • •

ADEdit Command Reference and Scripting Guide 245

Syntax

get_rs_envs

Abbreviation

grse

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of restricted environments in the currently
selected zone.

Examples

get_rs_envs

rse1 rse2

This example returns the list of restricted shell environments.

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with restricted shell environments:

• • • • • •

ADEdit command reference 246

list_rs_envs lists to stdout the restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

After you have a restricted shell environment stored in memory, you can use
the following commands to work with its fields:

delete_rs_env deletes the current restricted shell environment from
Active Directory and from memory.

get_rse_field reads a field value from the current restricted shell
environment.

save_rs_env saves the restricted shell environment to Active Directory.

set_rse_field sets a field value in the current restricted shell
environment.

get_rsc_field

Use the get_rsc_field command to return the value of a specified field value
from the currently selected restricted shell command that is stored in
memory. Centrify-specific fields are similar to Active Directory attributes but
are stored within the Active Directory schema.

The get_rsc_field command does not query Active Directory for the
restricted shell command. If you change field values using ADEdit without
saving the restricted shell command to Active Directory, the field value you
retrieve using get_rsc_field won’t match the value stored in Active
Directory.

You can only use the get_rsc_field command if the currently selected zone
is a classic4 zone. The command does not work in other types of zones.

Zone type

Classic only

• • • • • •

ADEdit Command Reference and Scripting Guide 247

Syntax

get_rsc_field field

Abbreviation

grscf

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
field string Required. Specifies the name of the field whose value you want

to retrieve. The possible values are:

description: Returns text describing the restricted
shell command.

cmd: Returns the restricted shell command string
or strings.

path: Returns the path to the command’s location.

form: Returns an integer that indicates whether the
cmd and path strings use wild cards (0) or a regular
expression (1).

dzsh_runas: Returns a list of users and groups that
can run this command in a restricted shell
environment (dzsh). Users can be listed by user
name or UID.

keep: Returns a comma-separated list of
environment variables from the current user’s

• • • • • •

ADEdit command reference 248

Argument Type Description
environment to keep.

del: Returns a comma-separated list of
environment variables from the current user’s
environment to delete.

add: Returns a comma-separated list of
environment variables to add to the final set of
environment variables.

pri: Returns a n integer that specifies the command
priority for the restricted shell command object.

umask: Returns an integer that defines who can
execute the command.

flags: Returns an integer that specifies a
combination of different properties for the
command.

createTime: The time and date this command was
created, returned in generalized time format.

modifyTime: The time and date this command was
last modified, returned in generalized time format.

dn: The command’s distinguished name.

Return value

This command returns a field value. The data type depends on the field
specified. For more information about the field values returned by different
fields, see get_dzc_field.

Examples

get_rsc_field description

This example returns the contents of the description field:

This is the RSC description

• • • • • •

ADEdit Command Reference and Scripting Guide 249

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
restricted shell command to work with:

get_rs_commands returns a Tcl list of restricted shell commands in the
current zone.

list_rs_commands lists to stdout the restricted shell commands in the
current zone.

new_rs_command creates a new restricted shell command and stores it
in memory.

select_rs_command retrieves a restricted shell command from Active
Directory and stores it in memory.

After you have a restricted shell command stored in memory, you can use the
following commands to work with that restricted shell:

delete_rs_command deletes the selected command from Active
Directory and from memory.

save_rs_command saves the selected command with its current settings
to Active Directory.

set_rsc_field sets a field value in the currently selected command.

get_rse_cmds

Use the get_rse_cmds command to return a Tcl list of restricted shell
commands associated with the currently selected restricted shell
environment.

The get_rse_cmds command does not query Active Directory for the
restricted shell environment. If you change the restricted shell commands
associated with the current restricted shell environment using ADEdit without
saving the restricted shell environment to Active Directory, the commands
you retrieve using get_rse_cmds won’t match those stored in Active
Directory.

• • • • • •

ADEdit command reference 250

You can only use the get_rse_cmds command if the currently selected zone is
a classic4 zone. The command does not work in other types of zones.

Zone type

Classic only

Syntax

get_rse_cmds

Abbreviation

grsec

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of restricted shell commands associated with
the currently selected restricted shell environment. Each restricted shell
command in the list shows the command name followed by a slash (/) and the
zone in which the command is defined.

• • • • • •

ADEdit Command Reference and Scripting Guide 251

Examples

get_rse_cmds

The command returns the list restricted commands:

rse1-id2/c123 rse1-id1/c123

Related commands

Before you use this command, you must have a currently selected restricted
shell environment stored in memory. The following commands enable you to
view and select the restricted shell environments:

list_rs_envs lists to stdout the restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

save_rs_env saves the restricted shell environment to Active Directory.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

After you have a restricted shell environment stored in memory, you can use
the following command to work with its fields:

set_rse_field sets a field value in the current restricted shell
environment.

get_rse_field

Use the get_rse_field command to return a field value from the currently
selected restricted shell environment stored in memory.

The get_rse_field command does not query Active Directory for the
restricted shell environment. If you have changed field values using ADEdit
without saving the restricted shell environment to Active Directory, the field
value you retrieve using get_rse_field won’t match the field value for the
restricted shell environment that is stored in Active Directory.

• • • • • •

ADEdit command reference 252

You can only use the get_rse_field command if the currently selected zone
is a classic4 zone. The command does not work in other types of zones.

Zone type

Classic only

Syntax

get_rse_field field

Abbreviation

grsef

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
field string Required. Specifies the name of the field whose value to get.

The only possible value is:

description: Returns a text string describing the restricted
shell environment.

• • • • • •

ADEdit Command Reference and Scripting Guide 253

Return value

This command returns a field value, which varies in type depending on the
data type stored by the field.

Examples

get_rse_field description

This command returns the content of the description field. For example:

This is the restricted shell environment description

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with restricted shell environments:

get_rs_envs returns a Tcl list of restricted shell environments.

list_rs_envs lists to stdout the restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

After you have a restricted shell environment stored in memory, you can use
the following commands to work with its fields:

delete_rs_env deletes the current restricted shell environment from
Active Directory and from memory.

save_rs_env saves the restricted shell environment to Active Directory.

set_rse_field sets a field value in the current restricted shell
environment.

• • • • • •

ADEdit command reference 254

get_schema_guid

Use the get_schema_guid command to look up a specified class or attribute
in Active Directory. If the specified object is found, the command returns the
globally unique identifier (GUID) of the class or attribute.

This command is useful for setting a security descriptor (SD) at a class or
attribute level.

Zone type

Not applicable

Syntax

get_schema_guid schema_name

Abbreviation

gsg

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
schema_name string Required. Specifies the name of a class or attribute.

• • • • • •

ADEdit Command Reference and Scripting Guide 255

Return value

This command returns the globally unique identifier (GUID) of the provided
schema object (class or attribute).

Examples

get_schema_guid MS-DS-Az-Role

This example returns the globally unique identifier of MS-DS-Az-Role:

8213eac9-9d55-44dc-925c-e9a52b927644

Related commands

None.

get_zone_computer_field

Use the get_zone_computer_field command to return the value of a
specified field from the currently selected zone computer stored in memory.
The get_zone_computer_field command does not query Active Directory for
the zone computer. If you change field values using ADEdit without saving the
zone computer to Active Directory, the field value you retrieve using get_

zone_computer_field won’t match the same field value for the zone
computer stored in Active Directory.

Zone type

Classic and hierarchical

Syntax

get_zone_computer_field field

• • • • • •

ADEdit command reference 256

Abbreviation

gzcf

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
field string Required. Specifies the case-sensitive name of the field whose

value to retrieve. The possible values are:

addn: Returns the distinguished name of the Active
Directory computer object for the zone computer.
For example, if the computer object is created in the
default Computers container, this field might return
a path similar to CN=firefly-

sf,CN=Computers,DC=ajax,DC=org.

agentVersion: Returns the version of agent
currently installed on the zone computer.

cpus: Returns the number of CPUs in the computer.

createTime: Returns the time and date this zone
computer was created (in generalized time format).

dn: Returns the distinguished name of the service
connection point for the zone computer. If the
computer is in a Services for UNIX (SFU) zone, no
value is returned for this field.

dnsname: Returns the domain name service (DNS)
name of the zone computer.

enabled: Returns 1 if the zone computer is enabled
in its zone or 0 if it is not.

• • • • • •

ADEdit Command Reference and Scripting Guide 257

Argument Type Description
modifyTime: Returns the time and date this zone
computer was last modified (in generalized time
format).

Return value

This command returns a field value. The data type depends on the field
specified.

Examples

get_zone_computer_field dnsname

This example returns the name of the zone computer as listed in DNS:

printserver.acme.com

Related commands

Before you use this command, you must have a currently selected zone
computer stored in memory. The following commands enable you to view and
manage the zone computers:

get_zone_computers returns a Tcl list of the Active Directory names of all
zone computers in the current zone.

list_zone_computers lists to stdout the zone computers in the current
zone.

new_zone_computer creates a new zone computer and stores it in
memory.

select_zone_computer retrieves a zone computer from Active Directory
and stores it in memory.

After you have a zone computer stored in memory, you can use the following
commands to work with that zone computer:

• • • • • •

ADEdit command reference 258

delete_zone_computer deletes the zone computer from Active Directory
and from memory.

save_zone_computer saves the zone computer with its current settings
to Active Directory.

set_zone_computer_field sets a field value in the currently selected zone
computer.

get_zone_computers

Use the get_zone_computers command to check Active Directory and return
a Tcl list of zone computers defined within the currently selected zone. If
executed in a script, this command does not output its list to stdout, and no
output appears in the shell where the script is executed. Use list_zone_

computers to output the list to stdout.

Zone type

Classic and hierarchical

Syntax

get_zone_computers

Abbreviation

gzc

Options

This command takes no options.

• • • • • •

ADEdit Command Reference and Scripting Guide 259

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of zone computers defined in the currently
selected zone. Each entry in the list is the security identifier (SID) of a
computer that you can use to look up that computer.

Examples

get_zone_computers

This example returns the security identifier for each computer:

*S-1-5-21-2076040321-3326545908-468068287-1107

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and manage
the zone computers:

list_zone_computers lists to stdout the zone computers in the current
zone.

new_zone_computer creates a new zone computer and stores it in
memory.

select_zone_computer retrieves a zone computer from Active Directory
and stores it in memory.

After you have a zone computer stored in memory, you can use the following
commands to work with that zone computer:

delete_zone_computer deletes the zone computer from Active Directory
and from memory.

• • • • • •

ADEdit command reference 260

get_zone_computer_field reads a field value from the currently selected
zone computer.

save_zone_computer saves the zone computer with its current settings
to Active Directory.

set_zone_computer_field sets a field value in the currently selected zone
computer.

get_zone_field

Use the get_zone_field command to return the value for a specified field
from the currently selected zone stored in memory. The get_zone_field

command does not query Active Directory for this zone. If you change field
values using ADEdit without saving the zone to Active Directory, the field value
you retrieve using get_zone_field won’t match the same field value for the
zone stored in Active Directory.

Zone type

Classic and hierarchical

Syntax

get_zone_field field

Abbreviation

gzf

Options

This command takes no options.

• • • • • •

ADEdit Command Reference and Scripting Guide 261

Arguments

This command takes the following argument:

Argument Type Description
field string Required. Specifies the case-sensitive name of the field whose

value to retrieve.

The data type depends on the field you return. The possible field values are:

availableshells: Returns the shells available to assign to new users in
the zone.

block.parent.zgroup: Returns the value of the block.parent.zgroup

field in the zone object’s description.

cloudurl: Returns the name of the cloud instance associated with the
selected zone.

computers: Returns the computer group UPN that is assigned to the
computer role selected as a zone.

createTime: Returns the time and date this zone was created.

customAttr: Returns the custom text strings that have been set for the
zone. This field is only applicable for hierarchical zones.

defaultgid: Returns the default primary group to assign to new users.

defaultgecos: Returns the default GECOS data to assign to new users.

defaulthome: Returns the default home directory to assign to new
users.

defaultshell: Returns the default shell to assign to new users.

description: Returns the description of the zone.

dn: Returns the zone’s distinguished name.

gidnext: Returns the next GID to use when auto-assigning GID numbers
to new groups.

gidreserved: Returns the GID number or range of numbers (1-100) that
are reserved.

groupname: Returns the default group name used for new groups in the
zone.

• • • • • •

ADEdit command reference 262

modifyTime: Returns the time and date this zone was last modified.

nisdomain: Returns the name of the NIS domain if it has been set.

parent: Returns the distinguished name (DN) of the parent zone for the
selected zone.

schema: Returns the schema used in this zone, for example, std.

sid2iddomainmap: Returns the domain ID mapping from the selected
zone. This field is not supported for auto zones nor classic zones.

sfudomain: Returns the Windows domain name for the SFU zone. Only
use this argument if the current zone is a Service for UNIX (sfu) zone.

type: Returns the type of the zone, for example, classic4 or tree.

uidnext: Returns the next UID to use when auto-assigning UID numbers
to new users.

uidreserved: Returns the UID number or range of numbers (1-100) that
are reserved.

username: Returns the default user name used for new users in the
zone.

For more information about the values returned by these fields, see the
Return value section.

Return value

This command returns the current value for the specified field. The data type
depends on the field specified.

This field Returns
availableshells Returns the list of shells available to choose from when adding

new users to the currently selected zone. The value is a list of
shell paths, separated by colons (:). For example,
“/bin/bash:/bin/csh:/bin/ksh”

block.parent.zgroup Returns the value of the block.parent.zgroup field from
the zone object’s description for the currently selected zone.
This field can be true if you want to prevent groups
provisioned in the parent zone from being visible in the child
zone if they aren’t being used. The default value is false.

• • • • • •

ADEdit Command Reference and Scripting Guide 263

This field Returns
cloudurl Returns the fully-qualified URL of the cloud instance

associated with the selected zone.

computers Returns the computer group UPN that is assigned to the
computer role if the currently selected zone is a “computer
role” zone.

createTime Returns the time and date this zone was created (in
generalized time format).

defaultgid Returns the default primary group to assign to new users in
the currently selected zone. The value can be a specific GID
value or include variables.

defaultgecos Returns the default GECOS data to assign to new users in the
currently selected zone. The value can be a string or include
variables.

defaulthome Returns the default home directory to assign to new users in
the currently selected zone. The value can be a string that
defines the path or include variables.

defaultshell Returns the default shell to assign to new users in the
currently selected zone. The value can be a string that defines
the shell or include variables.

description Returns the description of the zone. If the currently selected
zone is a computer role, this field returns the Active Directory
description attribute for the msds-AzScope object.

dn Returns the zone’s distinguished name. If the currently
selected zone is a computer role, this field returns the Active
Directory distinguished name attribute of the msds-AzScope

object.

gidnext Returns the next GID to use when auto-assigning GID
numbers to new groups in the currently selected zone.

gidreserved Returns the GID number or range of numbers (1-100) that are
reserved in the currently selected zone.

groupname Returns the default group name used for new groups in the
currently selected zone. You can only return the value for this
field if the current zone is a hierarchical zone.

modifyTime Returns the time and date this zone was last modified (in
generalized time format).

nisdomain Returns the name of the NIS domain if it has been set. The
default value is the zone name.

• • • • • •

ADEdit command reference 264

This field Returns
parent Returns the distinguished name (DN) of the parent zone for

the currently selected zone. You can only return the value for
this field if the current zone is a hierarchical zone. You can use
the option -raw with this field to return the parentLink

attribute in the raw Guid@Domain format.

schema Returns the schema used in this zone, for example, std.

sfudomain Returns the Windows domain name for the SFU zone. Only
use this argument if the current zone is a Service for UNIX (sfu)
zone.

sid2iddomainmap Returns a comma-separated key value pairs string. If an empty
string is returned, that means that there's no domain
ID mapping for the selected zone.

type Returns the type of the currently selected zone. For example,
this field returns classic3 or classic4 for a classic zone or
tree for a hierarchical zone.

uidnext Returns the next UID to use when auto-assigning UID
numbers to new users in the currently selected zone.

uidreserved Returns the UID number or range of numbers (1-100) that are
reserved in the currently selected zone.

username Returns the default user name used for new users in the zone.
You can only return the value for this field if the current zone
is a hierarchical zone.

Examples

get_zone_field type

This example returns the zone type:

tree

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
zone:

• • • • • •

ADEdit Command Reference and Scripting Guide 265

create_zone creates a new zone in Active Directory.

get_zones returns a Tcl list of all zones within a specified domain.

select_zone retrieves a zone from Active Directory and stores it in
memory.

After you have a zone stored in memory, you can use the following commands
to work with that zone computer:

delegate_zone_right delegates a zone use right to a specified user or
computer.

delete_zone deletes the selected zone from Active Directory and
memory.

get_child_zones returns a Tcl list of child zones, computer roles, or
computer zones.

get_zone_nss_vars returns the NSS substitution variable for the selected
zone.

save_zone saves the selected zone with its current settings to Active
Directory.

set_zone_field sets a field value in the currently selected zone.

get_zone_group_field

Use the get_zone_group_field command to return the value for a specified
field from the currently selected zone group stored in memory. The get_

zone_group_field command does not query Active Directory for the zone
group. If you change field values using ADEdit without saving the zone group
to Active Directory, the field value you retrieve using get_zone_group_field

won’t match the same field value for the zone group stored in Active
Directory.

Zone type

Classic and hierarchical

• • • • • •

ADEdit command reference 266

Syntax

get_zone_group_field field

Abbreviation

gzgf

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
field string Required. Specifies the case-sensitive name of the field whose

value to retrieve. The possible values are:

addn: Returns the distinguished name of the Active
Directory group object for the zone group. For
example, if the group object is created in the default
Users container, this field might return a path
similar to
CN=pubs-team,CN=Users,DC=ajax,DC=org.

createTime: Returns the time and date this zone
group was created (in generalized time format).

dn: Returns the distinguished name of the service
connection point for the zone group. If the zone is a
Services for UNIX (sfu) zone, no value is returned for
this field.

gid: Returns the numeric identifier for the group.

modifyTime: Returns the time and date this zone

• • • • • •

ADEdit Command Reference and Scripting Guide 267

Argument Type Description
group was last modified (in generalized time
format).

name: Returns the group name.

required: Returns 1 if the zone group is required for
members in this zone, or 0 if the group is not
required. Users assigned to a required group
cannot remove the group from their active set of
groups.

You can also specify AIX extended attributes as the field to get
an extended attribute value for a group. Extended attribute
fields start with the aix. prefix. For example, the admin

extended attribute can be retrieved by specifying aix.admin
as the field.

Return value

This command returns a field value. The data type depends on the field
specified.

Examples

The following example returns the group name.

get_zone_group_field name

padmins

If the current group is on AIX, you can get AIX group extended attributes and
values. For example, to find out if the current group is an administrative
group, you can get the admin extended attribute:

get_zone_group_field aix.admin

true

• • • • • •

ADEdit command reference 268

Related commands

Before you use this command, you must have a currently selected zone group
stored in memory. The following commands enable you to view and manage
the zone groups:

list_zone_groups lists to stdout the zone groups in the current zone.

new_zone_group creates a new zone group and stores it in memory.

select_zone_group retrieves a zone group from Active Directory and
stores it in memory.

After you have a zone group stored in memory, you can use the following
commands to work with that zone group:

delete_zone_group deletes the selected zone group from Active
Directory and from memory.

save_zone_group saves the selected zone group with its current settings
to Active Directory.

set_zone_group_field sets a field value in the currently selected zone
group.

get_zone_groups

Use the get_zone_groups command to check Active Directory and return a
Tcl list of zone groups defined within the currently selected zone. If executed
in a script, this command does not output its list to stdout, and no output
appears in the shell where the script is executed. Use list_zone_groups to
output the list to stdout.

Zone type

Classic and hierarchical

Syntax

get_zone_groups

• • • • • •

ADEdit Command Reference and Scripting Guide 269

Abbreviation

gzg

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of zone groups defined in the currently
selected zone. Each entry in the list is the user principal name (UPN) of a
group that you can use to look up that group.

Examples

get_zone_groups

This example returns the list of zone groups: poweradmins@acme.com
auditors@acme.com

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
zone groups:

list_zone_groups lists to stdout the zone groups in the current zone.

new_zone_group creates a new zone group and stores it in memory.

• • • • • •

ADEdit command reference 270

select_zone_group retrieves a zone group from Active Directory and
stores it in memory.

After you have a zone group stored in memory, you can use the following
commands to work with that zone group:

delete_zone_group deletes the selected zone group from Active
Directory and from memory.

get_zone_group_field reads a field value from the currently selected zone
group.

save_zone_group saves the selected zone group with its current settings
to Active Directory.

set_zone_group_field sets a field value in the currently selected zone
group.

get_zone_nss_vars

Use the get_zone_nss_vars command to return a Tcl list containing the NSS
substitution variables for the currently selected zone stored in memory. This
command only works on hierarchical zones and won’t return a value for other
zone types.

The get_zone_nss_vars command does not query Active Directory for this
zone. If you change the variables using set_zone_field without saving the
zone Active Directory, the variable you retrieve using get_zone_nss_vars

won’t match the same field variable for the zone stored in Active Directory.

Zone type

Hierarchical only

Syntax

get_zone_nss_vars

• • • • • •

ADEdit Command Reference and Scripting Guide 271

Abbreviation

gznv

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of strings in the form “A=B”.

Examples

get_zone_nss_vars

This example returns: NSSRANDCOUNT=32000
NSRANDFILE=/params/nssrand.seed

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
zone:

create_zone creates a new zone in Active Directory.

get_zones returns a Tcl list of all zones within a specified domain.

select_zone retrieves a zone from Active Directory and stores it in
memory.

• • • • • •

ADEdit command reference 272

After you have a zone stored in memory, you can use the following commands
to work with that zone:

delegate_zone_right delegates a zone use right to a specified user or
computer.

delete_zone deletes the selected zone from Active Directory and
memory.

get_child_zones returns a Tcl list of child zones, computer roles, or
computer zones.

get_zone_field reads a field value from the currently selected zone.

save_zone saves the selected zone with its current settings to Active
Directory.

set_zone_field sets a field value in the currently selected zone.

get_zone_user_field

Use the get_zone_user_field command to return the value for a specified
field from the currently selected zone user stored in memory. The get_zone_

user_field command does not query Active Directory for the zone user. If
you change field values using ADEdit without saving the zone user to Active
Directory, the field value you retrieve using get_zone_user_field won’t
match the same field value for the zone user stored in Active Directory.

Zone type

Classic and hierarchical

Syntax

get_zone_user_field field

Abbreviation

gzuf

• • • • • •

ADEdit Command Reference and Scripting Guide 273

Options

This command takes no options.

Arguments

This command takes the following required argument:

field (string type)

Specifies the case-sensitive name of the field whose value to retrieve.

Argument values

addn: Returns the distinguished name of the Active Directory user
object for the zone user. For example, if the user object is created in the
default Users container, this field might return a path similar to
CN=amy.adams,CN=Users,DC=ajax,DC=org.

createTime: Returns the time and date this zone user was created.

dn: Returns the distinguished name of the service connection point for
the zone user. If the zone is a Services for UNIX (sfu) zone, no value is
returned for this field.

enabled: Returns 1 if the user is enabled, or 0 if the user is disabled. This
field is only applicable for users in classic zones. All other zone types use
roles.

foreign: If the zone user comes from another forest, this field returns
the user principal name of the zone user. Otherwise, this field returns no
value.

gecos: Returns information from the GECOS field.

gid: Returns the primary group identifier (GID) for the user.

home: the Returns user’s home directory.

modifyTime: Returns the time and date this zone user was last modified.

shell: Returns the user’s shell type.

• • • • • •

ADEdit command reference 274

uid: Returns the numeric identifier for the user.

uname: Returns the user name.

You can also specify AIX extended attributes as the field to get an extended
attribute value for a zone user.

Return value

This command returns a field value. The data type depends on the field
specified.

Examples

The following example returns the current zone user’s user name:

get_zone_user_field uname
adam

If the current zone user is on AIX, you can get extended attributes and values.
For example:

select_zone_user aixu1@acme.com
get_zone_user_field aix.ttys
u1,u2,u3

Related commands

Before you use this command, you must have a currently selected zone user
stored in memory. The following commands enable you to view and select a
zone user:

get_zone_users returns a Tcl list of the Active Directory names of all zone
users in the current zone.

list_zone_users lists to stdout the zone users and their NSS data in the
current zone.

new_zone_user creates a new zone user and stores it in memory.

select_zone_user retrieves a zone user from Active Directory and stores
it in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 275

After you have a zone user stored in memory, you can use the following
commands to work with that zone user:

delete_zone_user deletes the selected zone user from Active Directory
and from memory.

save_zone_user saves the selected zone user with its current settings to
Active Directory.

set_zone_user_field sets a field value in the currently selected zone user.

get_zone_users

Use the get_zone_users command to check Active Directory and return a Tcl
list of zone users defined within the currently selected zone. If executed in a
script, this command does not output its list to stdout, and no output
appears in the shell where the script is executed. Use list_zone_users to
output the list to stdout.

Zone type

Classic and hierarchical

Syntax

get_zone_users [-upn]

Abbreviation

gzu

Options

This command takes the following option:

• • • • • •

ADEdit command reference 276

Option Description
-upn Optional. Returns user names in user principal name (UPN) format rather

than the default sAMAccount@domain format.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of zone users defined in the currently selected
zone. By default, users are listed by sAMAccountName@domain. You can use the
-upn option to return users listed by user principal name (UPN). If a zone user
is an orphan user—that is, its corresponding Active Directory user no longer
exists—the user is listed by its security identifier (SID) instead of the
sAMAccountName or user principal name.

Examples

get_zone_users

This example returns the list of users: adam.avery brenda.butler
chris.carter

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
zone user:

list_zone_users lists to stdout the zone users and their NSS data in the
current zone.

new_zone_user creates a new zone user and stores it in memory.

select_zone_user retrieves a zone user from Active Directory and stores
it in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 277

After you have a zone user stored in memory, you can use the following
commands to work with that zone user:

delete_zone_user deletes the selected zone user from Active Directory
and from memory.

get_zone_user_field reads a field value from the currently selected zone
user.

save_zone_user saves the selected zone user with its current settings to
Active Directory.

set_zone_user_field sets a field value in the currently selected zone user.

get_zones

Use the get_zones command to check Active Directory and return a Tcl list of
zones within a specified domain. Note that this does not include computer-
specific override zones or computer roles.

Zone type

Classic and hierarchical

Syntax

get_zones domain

Abbreviation

gz

Options

This command takes no options.

• • • • • •

ADEdit command reference 278

Arguments

This command takes the following argument:

Argument Type Description
domain string Required. Specifies the name of the domain for which to return

zones.

Return value

This command returns a Tcl list with the distinguished name for each zone in
the specified domain.

Examples

get_zones acme.com

This example returns the list of zones in the acme.com domain:

CN=childzone1,CN=Zones,CN=Centrify,CN=Program
Data,DC=acme,DC=com
CN=childzone2,CN=Zones,CN=Centrify,CN=Program
Data,DC=acme,DC=com
CN=global,CN=Zones,CN=Centrify,CN=Program
Data,DC=acme,DC=com

Related commands

The following commands perform actions related to this command:

create_zone creates a new zone in Active Directory.

select_zone retrieves a zone from Active Directory and stores it in
memory.

After you have a zone stored in memory, you can use the following commands
to work with that zone:

• • • • • •

ADEdit Command Reference and Scripting Guide 279

delegate_zone_right delegates a zone use right to a specified user or
computer.

delete_zone deletes the selected zone from Active Directory and
memory.

get_child_zones returns a Tcl list of child zones, computer roles, or
computer zones.

get_zone_field reads a field value from the currently selected zone.

get_zone_nss_vars returns the NSS substitution variable for the selected
zone.

save_zone saves the selected zone with its current settings to Active
Directory.

set_zone_field sets a field value in the currently selected zone.

getent_passwd

Use the getent_passwd command to return a Tcl list of local UNIX users that
are defined in the /etc/passwd file on the ADEdit host computer. If the local
host is joined to an Active Directory domain, the command also returns
information for the Active Directory users who have a profile in the joined
domain and zone.

Zone type

Not applicable

Syntax

getent_passwd

Abbreviation

gep

• • • • • •

ADEdit command reference 280

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a Tcl list of /etc/passwd file entries with all user profile
attributes.

Examples

getent_passwd

This example returns the contents of the local /etc/passwd file:

{root x 0 0 root /root /bin/bash} {bin x 1 1 bin /bin
/sbin/nologin}
{daemon x 2 2 daemon /sbin /sbin/nologin}
{adm x 3 4 adm /var/adm /sbin/nologin}
{lp x 4 7 lp /var/spool/lpd /sbin/nologin}
{sync x 5 0 sync /sbin /bin/sync}
{shutdown x 6 0 shutdown /sbin /sbin/shutdown}

Related commands

The following command performs actions related to this command:

get_pwnam searches the /etc/passwd file for a UNIX user name and, if
found, returns a Tcl list of the profile attributes associated with the user.

• • • • • •

ADEdit Command Reference and Scripting Guide 281

guid_to_id

Use the guid_to_id command to specify a globally unique identifier (GUID)
for a user or group and returns a UID or GID that uses the Apple methodology
for automatically generated unique identifiers.

Zone type

Not applicable

Syntax

guid_to_id guid

Abbreviation

None.

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
guid string Required. Specifies the globally unique identifier for a user or

group.

• • • • • •

ADEdit command reference 282

Return value

This command returns UID or GID for the user or group generated using the
Apple mechanism for automatically generating identifiers.

Examples

guid_to_id 763ddbc8-44cc-4a79-83aa-abc899b46aba

This example returns the UID for the user associated with the specified
globally unique identifier:

1983765448

Related commands

The following command performs actions related to this command:

principal_to_id returns a unique UID or GID based on either the Apple
methodology or the Centrify Auto Zone methodology for generating
numeric identifiers.

sid_to_uid converts a user’s security identifier to a numeric identifier
(UID).

help

Use the help command to return information about one or more ADEdit
commands. It’s followed by a command pattern that is either the name of a
single ADEdit command or a string with wild cards that specifies multiple
possible commands. The command pattern can also be a command
abbreviation.

The command pattern wild cards are:

? for a single character

* for multiple characters

• • • • • •

ADEdit Command Reference and Scripting Guide 283

Zone type

Not applicable

Syntax

help command_pattern

Abbreviation

h

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
command_
pattern

string Required. Specifies the name of one or more ADEdit
commands for which to return information.

You can specify a command name, command shortcut or use
the ? and * wild cards to specify a single character or multiple
characters respectively.

Return value

This command returns information for the specified command or commands.
If there’s no match for the command_pattern you specify, the command returns
nothing.

• • • • • •

ADEdit command reference 284

Examples

help explain_sd

This example returns information for the explain_sd command.

help ?et*

This example returns information for the ADEdit commands that start with
get or set, such as get_zones, get_zone_field, set_zone_field, and set_

role_field.

Related commands

None.

is_dz_enabled

Use this command to check whether authorization is enabled in a currently
selected classic zone.

Zone type

Classic only

Syntax

is_dz_enabled

Abbreviation

idze

• • • • • •

ADEdit Command Reference and Scripting Guide 285

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns 1 if authorization is enabled in a classic or 0 if
authorization is not enabled.

Examples

create_zone classic4 cn=c125,cn=zones,dc=test,dc=net

select_zone cn=c125,cn=zones,dc=test,dc=net

is_dz_enable

0

manage_dz -on

is_dz_enable

1

This code example creates a new classic zone, checks that authorization is
disabled by default, then enables authorization for the zone.

Related commands

The following command performs actions related to this command:

manage_dz enables and disables authorization in classic4 zones.

• • • • • •

ADEdit command reference 286

joined_get_user_membership

Use the joined_get_user_membership command to have adclient query
Active Directory for a list of groups that a specified user belongs to in the
domain to which ADEdit’s host computer is joined. If the adclient query
returns groups, this command returns those groups in a Tcl list.

Because this command queries Active Directory through adclient, the query
might use the adclient cache instead of connecting directly to Active
Directory. The adclient cache isn’t guaranteed to be updated with ADedit
activity. Therefore, you might need to execute the Centrify UNIX command
adflush before using joined_get_user_membership to ensure you get the
most up-to-date results.

Zone type

Not applicable

Syntax

joined_get_user_membership user_UPN

Abbreviation

jgum

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit Command Reference and Scripting Guide 287

Argument Type Description
user_UPN string Required. Specifies the user principal name (UPN) of the user

to check for group membership.

Return value

This command returns a Tcl list of groups.

Examples

joined_get_user_membership liz.lemon@acme.com

This example returns group membership for liz.lemon in the joined domain:

acme.com/Users/Domain Users

Related commands

The following commands performs actions related to this command:

joined_user_in_group checks Active Directory through adclient to see if
a user is in a group.

get_effective_groups returns a Tcl list of groups a user belongs to.

get_group_members returns a Tcl list of members in a group.

joined_name_to_principal

Use the joined_name_to_principal command have adclient query Active
Directory for a UNIX name of a specified user. If the specified user is found,
the command returns the associated Active Directory user name in the
format of sAMAccountName@domain. The command can also optionally return
the user principal name (UPN) of the user. This command works only for users
within the domain to which ADEdit’s host computer is joined through
adclient.

• • • • • •

ADEdit command reference 288

Zone type

Not applicable

Syntax

joined_name_to_principal [-upn] UNIX_name

Abbreviation

jntp

Options

This command takes the following option:

Option Description
-upn Returns the user’s Active Directory name in user principal name (UPN)

format.

Arguments

This command takes the following argument:

Argument Type Description
UNIX_name string Required. Specifies the UNIX name of a user to look for in

Active Directory.

Return value

This command returns the sAMAccountName@domain form of the user name if
the user is found in Active Directory. If you specify the -upn option, this
command returns the UPN form of user name.

• • • • • •

ADEdit Command Reference and Scripting Guide 289

Examples

joined_name_to_principal -upn adam

This example returns the sAMAccountName@domain for the UNIX user adam:

adam.avery@acme.com

Related commands

The following commands performs actions related to this command:

principal_to_dn searches Active Directory for a user principal name
(UPN) and, if found, returns the corresponding DN.

dn_to_principal searches Active Directory for a distinguished name and,
if found, returns the corresponding UPN.

principal_from_sid searches Active Directory for a security identifier (SID)
and returns the security principal associated with the SID.

joined_user_in_group

Use the joined_user_in_group command to have adclient query Active
Directory to see if a specified user belongs to a specified group. This
command works only for users and groups within the domain to which
ADEdit’s host computer is joined through adclient.

Because this command queries Active Directory through adclient, the query
might use adclient’s cache rather than connect directly to Active Directory.
The adclient cache isn’t guaranteed to be updated with ADedit activity.
Therefore, you might need to execute the Centrify UNIX command adflush

before using joined_user_in_group to ensure you get the most up-to-date
results.

Zone type

Not applicable

• • • • • •

ADEdit command reference 290

Syntax

joined_user_in_group user_UPN group_UPN

Abbreviation

jug

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
user_UPN string Required. Specifies the user principal name (UPN) of the user

for which you want to check group membership.

group_UPN string Required. Specifies the UPN of the group for which you want to
check user membership.

Return value

This command returns 1 if the user is a member of the group, or 0 if the user
is not a member of the group.

Examples

joined_user_in_group martin.moore@acme.com
poweradmins@acme.com

This example returns 1 because martin.moore is a member of the
poweradmins group.

• • • • • •

ADEdit Command Reference and Scripting Guide 291

Related commands

The following commands performs actions related to this command:

joined_get_user_membership uses adclient to return a Tcl list of
groups that a user belongs to.

get_effective_groups checks Active Directory directly and returns a Tcl
list of groups a user belongs to.

get_group_members checks Active Directory and returns a Tcl list of
members in a group.

list_dz_commands

Use the list_dz_commands command to check Active Directory and return a
list of UNIX command objects defined within the currently selected zone. If
executed in a script, this command outputs its list to stdout so that the
output appears in the shell where the script is executed. The command does
not return a Tcl list back to the executing script. Use get_dz_commands to
return a Tcl list.

You can only use the list_dz_commands command to return UNIX command
data for classic4 and hierarchical zones.

Zone type

Classic and hierarchical

Syntax

list_dz_commands

Abbreviation

lsdzc

• • • • • •

ADEdit command reference 292

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of UNIX commands defined in the
currently selected zone. Each entry in the list contains the following fields,
separated by colons (:):

The name of the UNIX command followed by a slash (/) and the name of
the zone where the command is defined.

The properties of the command.

Text describing the command.

Examples

list_dz_commands

This example returns commands in the following format:

root_any/global : * form(0) dzdo_runas(root) flags(16) :
Run any command as root

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
UNIX command:

• • • • • •

ADEdit Command Reference and Scripting Guide 293

get_dz_commands returns a Tcl list of UNIX commands in the current
zone.

new_dz_command creates a new UNIX command and stores it in
memory.

select_dz_command retrieves a UNIX command from Active Directory
and stores it in memory.

After you have a UNIX command stored in memory, you can use the following
commands to work with that command:

delete_dz_command deletes the selected command from Active
Directory and from memory.

get_dzc_field reads a field value from the currently selected command.

save_dz_command saves the selected command with its current settings
to Active Directory.

set_dzc_field sets a field value in the currently selected command.

list_local_groups_profile

Use the list_local_groups_profile command to display a list of local UNIX
and Linux group profiles that are defined in the current zone.

Zone type

Hierarchical only.

Syntax

list_local_groups_profile

Abbreviation

lslgp

• • • • • •

ADEdit command reference 294

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of the local UNIX and Linux group
profiles that are defined in the current zone. Each profile contains the group
name, GID, members, and profile flag value.

Examples

The following example returns a local group profile list.

list_local_groups_profile
lam_grp1:3001:lam_usr1:1
lam_grp2:3002:lam_usr2:1
lam_grp3:3003:lam_usr3:3

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 295

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

• • • • • •

ADEdit command reference 296

list_local_users_profile

Use the list_local_users_profile command to display a list of local UNIX
and Linux user profiles that are defined in the current zone.

Zone type

Hierarchical only.

Syntax

list_local_users_profile

Abbreviation

lslup

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of the local UNIX and Linux user
profiles that are defined in the current zone. Each profile contains the user
name, UID, primary GID, GECOS, home directory, shell, and profile flag value.

• • • • • •

ADEdit Command Reference and Scripting Guide 297

Examples

The following example returns a local user profile list.

list_local_users_profile

lam_usr1:2001:2001:lam usr1:/home/lam_usr1:/bin/bash:1

lam_usr2:2002:2002:lam usr2:/home/lam_usr2:/bin/bash:2

lam_usr3:2003:2003:lam usr3:/home/lam_usr3:/bin/bash:3

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

• • • • • •

ADEdit command reference 298

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

list_nis_map

Use the list_nis_map command to return a list of all map entries within the
currently selected NIS map. If executed in a script, this command outputs its
list to stdout so that the output appears in the shell where the script is
executed. The command does not return a Tcl list back to the executing script.
Use get_nis_map to return a Tcl list of NIS map entries.

Zone type

Not applicable

Syntax

list_nis_map

• • • • • •

ADEdit Command Reference and Scripting Guide 299

Abbreviation

lsnm

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of the map entries for the currently
selected NIS map. Each map entry in the list contains the following fields
separated by colons (:):

The key

The instance number of the key

The value

Examples

list_nis_map

This example returns map entries similar to the following:

Finance:1:Hank@acme.com,jane@acme.com,joe@acme.com

Mktg:1:Mike@acme.com,Sue@acme.com

• • • • • •

ADEdit command reference 300

Related commands

Before you use this command, you must have a currently selected NIS map
stored in memory. The following commands enable you to view and select a
NIS map:

get_nis_maps returns a Tcl list of NIS maps in the currently selected
zone.

list_nis_maps returns a list to stdout of all NIS maps in the currently
selected zone.

new_nis_map creates a new NIS map and stores it in memory.

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map:

add_map_entry or add_map_entry_with_comment adds a map entry to
the currently selected NIS map.

delete_map_entry removes an entry from the currently selected NIS
map.

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

get_nis_map or get_nis_map_with_comment returns a Tcl list of the map
entries in the currently selected NIS map.

get_nis_map_field reads a field value from the currently selected NIS
map.

list_nis_map_with_comment lists to stdout the map entries in the
currently selected NIS map.

save_nis_map saves the selected NIS map with its current entries to
Active Directory.

list_nis_map_with_comment

Use the list_nis_map_with_comment command to return a list of all map
entries for the currently selected NIS map and includes the entries’ comment.

• • • • • •

ADEdit Command Reference and Scripting Guide 301

If executed in a script, this command outputs its list to stdout so that the
output appears in the shell where the script is executed.

The command does not return a Tcl list back to the executing script. Use get_
nis_map or get_nis_map_with_comment to return a Tcl list of NIS map entries
for parsing or further processing within the script.

Zone type

Not applicable

Syntax

list_nis_map_with_comment

Abbreviation

lsnmwc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of the map entries for the currently
selected NIS map. Each map entry in the list contains the following fields
separated by colons (:):

• • • • • •

ADEdit command reference 302

The key

The instance number of the key

The value

The comment

Examples

list_nis_map_with_comment

This example returns map entries similar to the following:

Finance:1:Hank@acme.com,jane@acme.com,joe@acme.com:Finance
dept staff

Mktg:1:Mike@acme.com,Sue@acme.com:Marketing dept staff

Related commands

Before you use this command, you must have a currently selected NIS map
stored in memory. The following commands enable you to view and select a
NIS map:

get_nis_maps returns a Tcl list of NIS maps in the currently selected
zone.

list_nis_maps lists to stdout the NIS maps in the currently selected zone.

new_nis_map creates a new NIS map and stores it in memory.

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map:

add_map_entry or add_map_entry_with_comment adds a map entry to
the currently selected NIS map.

delete_map_entry removes an entry from the currently selected NIS
map.

• • • • • •

ADEdit Command Reference and Scripting Guide 303

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

get_nis_map or get_nis_map_with_comment returns a Tcl list of the map
entries in the currently selected NIS map.

get_nis_map_field reads a field value from the currently selected NIS
map.

list_nis_map lists to stdout the map entries in the currently selected NIS
map.

save_nis_map saves the selected NIS map with its current entries to
Active Directory.

list_nis_maps

Use the list_nis_maps command to check Active Directory and return a list
of NIS maps defined in the currently selected zone. If executed in a script, this
command outputs its list to stdout so that the output appears in the shell
where the script is executed. The command does not return a Tcl list back to
the executing script. Use get_nis_maps to return a Tcl list.

Zone type

Not applicable

Syntax

list_nis_maps

Abbreviation

lsnms

• • • • • •

ADEdit command reference 304

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of NIS maps defined in the currently
selected zone.

Examples

list_nis_maps

This example returns the list of NS maps for the zone:

Aliases

Printers

Services

Related commands

Before you use this command, you must have a currently selected NIS map
stored in memory. The following commands enable you to view and select a
NIS map:

get_nis_maps returns a Tcl list of NIS maps in the currently selected
zone.

list_nis_maps lists to stdout the NIS maps in the currently selected zone.

new_nis_map creates a new NIS map and stores it in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 305

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map:

add_map_entry or add_map_entry_with_comment adds a map entry to
the currently selected NIS map.

delete_map_entry removes an entry from the currently selected NIS
map.

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

get_nis_map or get_nis_map_with_comment returns a Tcl list of the map
entries in the currently selected NIS map.

get_nis_map_field reads a field value from the currently selected NIS
map.

list_nis_map or list_nis_map_with_comment lists to stdout the map
entries in the currently selected NIS map.

save_nis_map saves the selected NIS map with its current entries to
Active Directory.

list_pam_apps

Use the list_pam_apps command to check Active Directory and return a list
of PAM application rights defined in the currently selected zone. If executed in
a script, this command outputs its list to stdout so that the output appears in
the shell where the script is executed. The command does not return a Tcl list
back to the executing script. Use get_pam_apps to return a Tcl list.

You can only use the list_pam_apps command to return PAM application
rights for classic4 and hierarchical zones.

Zone type

Classic and hierarchical

• • • • • •

ADEdit command reference 306

Syntax

list_pam_apps

Abbreviation

lspa

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of PAM application rights defined in the
currently selected zone. Each entry contains the following fields, separated by
colons (:):

The name of the PAM access right followed by a slash (/) and the zone in
which the PAM access right is defined.

The name of one or more PAM applications to which the right applies.

Text describing the PAM application object.

Examples

list_pam_apps

This example returns a list of PAM application access rights for the selected
zone (the following is a subset of the default predefined rights):

• • • • • •

ADEdit Command Reference and Scripting Guide 307

dzssh-all/global : dzssh-* : All of ssh services
dzssh-exec/global : dzssh-exec : Command execution
dzssh-scp/global : dzssh-scp : scp
dzssh-sftp/global : dzssh-sftp : sftp
dzssh-shell/global : dzssh-shell : Terminal tty/pty
dzssh-tunnel/global : dzssh-tunnel : Tunnel device
forwarding
dzssh-X11-forwarding/global : dzssh-x11-forwarding : X11
forwarding
login-all/global : * : Predefined global PAM permission. Do
not delete.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
PAM application object:

get_pam_apps returns a Tcl list of PAM applications in the current zone.

new_pam_app creates a new PAM application and stores it in memory.

select_pam_app retrieves a PAM application from Active Directory and
stores it in memory.

After you have a PAM application object stored in memory, you can use the
following commands to work with that PAM application:

delete_pam_app deletes the selected PAM application from Active
Directory and from memory.

get_pam_field reads a field value from the currently selected PAM
application.

save_pam_app saves the selected PAM application with its current
settings to Active Directory.

set_pam_field sets a field value in the currently selected PAM application.

list_pending_zone_groups

Use the list_pending_zone_groups command to check Active Directory and
return a list of pending import groups for the currently selected zone.

• • • • • •

ADEdit command reference 308

Pending import groups are group profiles that have been imported from
Linux or UNIX computers, but not yet mapped to any Active Directory group. If
executed in a script, this command outputs its list to stdout so that the
output appears in the shell where the script is executed. The command does
not return a Tcl list back to the executing script. Use get_pending_zone_

groups to return a Tcl list.

Zone type

Classic and hierarchical

Syntax

list_pending_zone_groups

Abbreviation

lpzg

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of pending import groups for the
currently selected zone. Each entry in the list contains the following fields,
separated by colons (:):

• • • • • •

ADEdit Command Reference and Scripting Guide 309

Distinguished name (DN) of the pending import group as it is stored in
Active Directory. The distinguished name for each pending import group
includes a prefix that consists of “PendingGroup” and the globally unique
identifier (GUID) for the group.

UNIX group name.

Numeric group identifier (GID).

Examples

list_pending_zone_groups

This example returns the list of groups similar to this:

CN=PendingGroup_573135e7-edd9-46b9-9cbd-
c839570a90c8,CN=Groups, CN=bean_
pz,CN=Zones,CN=Centrify,DC=win2k3,DC=test:root:0
CN=PendingGroup_7878065a-4d2f-4749-8f3b-
6ffe24303f6a,CN=Groups, CN=bean_
pz,CN=Zones,CN=Centrify,DC=win2k3,DC=test:unixgrp:5000

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following command performs actions related to this
command:

get_pending_zone_groups returns a Tcl list of the pending import groups
in the current zone.

list_pending_zone_users

Use the list_pending_zone_users command to check Active Directory and
return a list of pending import users for the currently selected zone. Pending
import users are user profiles that have been imported from Linux or UNIX
computers, but not yet mapped to any Active Directory user. If executed in a
script, this command outputs its list to stdout so that the output appears in
the shell where the script is executed. The command does not return a Tcl list
back to the executing script. Use get_pending_zone_users to return a Tcl list.

• • • • • •

ADEdit command reference 310

Zone type

Classic and hierarchical

Syntax

list_pending_zone_users

Abbreviation

lpzu

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of pending import users for the
currently selected zone. Each entry in the list contains the following fields,
separated by colons (:):

Distinguished name (DN) of the pending import user as it is stored in
Active Directory. The distinguished name for each pending import user
includes a prefix that consists of “PendingUser” and the globally unique
identifier (GUID) for the user.

UNIX user name.

Numeric user identifier (UID).

Numeric primary group identifier (GID).

• • • • • •

ADEdit Command Reference and Scripting Guide 311

Personal information from the GECOS field.

Home directory.

Default login shell.

Examples

list_pending_zone_users

This example returns the list of groups similar to this:

CN=PendingUser_09024f3a-6abc-4666-a127-
722f9fe0e0bf,CN=Users,CN=finance,

CN=Zones,CN=Centrify,DC=win2k3,DC=test:root:0:0:root:/root:
/bin/bash:
CN=PendingUser_0b9fe038-1325-438f-8529-
cb190ab5914a,CN=Users,CN=finance,
CN=Zones,CN=Centrify,DC=win2k3,DC=test:bean:6001:5000:bean.
zhang:/home/bean:/bin/bash:

Related commands

The following command performs actions related to this command:

get_pending_zone_users returns a Tcl list of the pending import users in
the current zone.

list_role_assignments

Use the list_role_assignments command to check Active Directory and
return a list of role assignments defined within the currently selected zone. If
executed in a script, this command outputs its list to stdout so that the
output appears in the shell where the script is executed. The command does
not return a Tcl list back to the executing script. Use get_role_assignments

to return a Tcl list.

If you do not specify an option, the command returns the current users and
groups in the zone with a role assignment using the default
sAMAccount@domain format.

• • • • • •

ADEdit command reference 312

You can only use the list_role_assignments command to return role
assignments for classic4 and hierarchical zones.

Zone type

Classic and hierarchical

Syntax

list_role_assignments [-upn] [-visible] [-user] [-group] [-
invalid]

Abbreviation

lsra

Options

This command takes the following options:

Option Description
-upn Optional. Returns user names in user principal name (UPN) format rather

than the default sAMAccount@domain format.

-visible Returns a list to stdout of the visible role assignments in the zone. Use
this option if you only want to return role assignments for the roles that
are identified as visible. This option is only applicable in hierarchical
zones.

-user Returns a list to stdout of the current users in the zone with a role
assignment. Use this option if you only want to return valid users with a
role assignment.

-group Returns a list to stdout of the current groups in the zone with a role
assignment. Use this option if you only want to return valid groups with a
role assignment.

-invalid Returns a list to stdout of any invalid role assignments in the zone. A role
assignment is invalid if it specifies a group or user that no longer exists.
Use this option if you only want to return invalid role assignments.

• • • • • •

ADEdit Command Reference and Scripting Guide 313

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of role assignments defined in the
currently selected zone. Each entry in the list provides the following
information:

The user or group to whom the role assignment applies by
sAMAccount@domain name or user principal name.

The name of the role assigned followed by a slash (/) and the zone where
the role is defined.

Examples

>bind pistolas.org

>select_zone
“cn=northamerica,cn=zones,ou=centrify,dc=pistolas,dc=org”

>list_role_assignments

This example returns the role assignments for the northamerica zone:

Domain Users@pistolas.org: Window Login/northamerica
adm-sf@pistolas.org: UNIX Login/northamerica
rey@pistolas.org: UNIX Login/northamerica
maya@pistolas.org: SQLAdmin/northamerica

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
role assignment:

get_role_assignments returns a Tcl list of role assignments in the current
zone.

• • • • • •

ADEdit command reference 314

new_role_assignment creates a new role assignment and stores it in
memory.

select_role_assignment retrieves a role assignment from Active Directory
and stores it in memory.

After you have a role assignment stored in memory, you can use the following
commands to work with that role assignment:

delete_role_assignment deletes the selected role assignment from Active
Directory and from memory.

get_role_assignment_field reads a field value from the currently selected
role assignment.

save_role_assignment saves the selected role assignment with its
current settings to Active Directory.

set_role_assignment_field sets a field value in the currently selected role
assignment.

list_role_rights

Use the list_role_rights command to return a list of all UNIX commands
and PAM application rights set within the currently selected role. If executed in
a script, this command outputs its list to stdout so that the output appears in
the shell where the script is executed. The command does not return a Tcl list
back to the executing script.

The list_role_rights command does not query Active Directory for the role.
If you change commands or PAM applications using ADEdit without saving the
role to Active Directory, commands and PAM applications you retrieve using
list_role_rights won’t match those stored in Active Directory.

You can only use list_role_rights to return role rights for classic4 and
hierarchical zones.

Zone type

Classic and hierarchical

• • • • • •

ADEdit Command Reference and Scripting Guide 315

Syntax

list_role_rights

Abbreviation

lsrr

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of the PAM application and UNIX
command rights that are defined for the currently selected role.

Each entry lists the name of the application or command right, the attributes
of the application or command, and any descriptive text.

Examples

list_role_rights

This example returns the list of PAM application and UNIX command rights:

dzssh-all/northamerica : dzssh-exec : Command execution
login-all/seattle : * : Predefined global PAM permission.
Do not delete.
cron-exec/seattle : cron form(0) dzdo_runas(admin) flags
(16) ;

• • • • • •

ADEdit command reference 316

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select a role:

get_roles returns a Tcl list of roles in the current zone.

list_roles returns a list of all roles in the currently selected zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with that role:

add_command_to_role adds a UNIX command right to the current role.

add_pamapp_to_role adds a PAM application right to the current role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM application rights associated
with the current role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the current role.

get_role_field reads a field value from the current role.

remove_command_from_role removes a UNIX command from the
current role.

remove_pamapp_from_role removes a PAM application from the current
role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the current role.

list_roles

Use the list_roles command to check Active Directory and return a list of
roles defined in the currently selected zone. If executed in a script, this

• • • • • •

ADEdit Command Reference and Scripting Guide 317

command outputs its list to stdout so that the output appears in the shell
where the script is executed. The command does not return a Tcl list back to
the executing script. Use get_roles to return a Tcl list.

You can only use list_roles to return role information for classic4 and
hierarchical zones.

Zone type

Classic and hierarchical

Syntax

list_roles

Abbreviation

lsr

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of roles defined in the currently
selected zone.

• • • • • •

ADEdit command reference 318

Examples

list_roles

This example returns the list of roles for the zone:

Rescue - always permit login
listed
scp
sftp
UNIX Login
Windows Login
winscp

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
role:

get_roles returns a Tcl list of roles in the current zone.

new_role creates a new role and stores it in memory as the currently
selected role.

select_role retrieves a role from Active Directory and stores it in memory
as the selected role.

After you have a role stored in memory, you can use the following commands
to work with that role:

add_command_to_role adds a UNIX command right to the current role.

add_pamapp_to_role adds a PAM application right to the current role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM application rights associated
with the current role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the current role.

get_role_field reads a field value from the current role.

• • • • • •

ADEdit Command Reference and Scripting Guide 319

list_role_rights returns a list of all UNIX command and PAM application
rights associated with the current role.

remove_command_from_role removes a UNIX command from the
current role.

remove_pamapp_from_role removes a PAM application from the current
role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the current role.

list_rs_commands

Use the list_rs_commands command to print a list of the restricted shell
commands that are defined for the currently selected zone. This command
retrieves information from Active Directory and to returns the list of
restricted shell commands to stdout. If you want to return a Tcl list of
restricted shell commands, use get_rs_commands.

Zone type

Classic only

Syntax

list_rs_commands

Abbreviation

lsrsc

Options

This command takes no options.

• • • • • •

ADEdit command reference 320

Arguments

This command takes no arguments.

Return value

This command returns a list of restricted shell commands for the currently
selected zone.

Examples

list_rs_commands

This command returns the list of restricted shell commands and attributes
similar to this:

rseid1/c123 : id form(0) dzsh_runas($) umask(77) path
(USERPATH) flags(0) :
rseid2/c123 : id2 form(0) dzsh_runas($) pri(1) umask(77)
path(USERPATH) flags(0) : id2

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
restricted shell command to work with:

get_rs_commands returns a Tcl list of restricted shell commands in the
current zone.

new_rs_command creates a new restricted shell command and stores it
in memory.

select_rs_command retrieves a restricted shell command from Active
Directory and stores it in memory.

After you have a restricted shell command stored in memory, you can use the
following commands to work with that restricted shell:

• • • • • •

ADEdit Command Reference and Scripting Guide 321

delete_rs_command deletes the selected command from Active
Directory and from memory.

get_rsc_field reads a field value from the currently selected command.

save_rs_command saves the selected command with its current settings
to Active Directory.

set_rsc_field sets a field value in the currently selected command.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and manage
the restricted shell commands:

delete_rs_command deletes the selected command from Active
Directory and from memory.

new_rs_command creates a new restricted shell command and stores it
in memory.

save_rs_command saves the selected restricted shell command with its
current settings to Active Directory.

select_rs_command retrieves a restricted shell command from Active
Directory and stores it in memory.

After you have a restricted shell command stored in memory, you can use the
following commands to work with its fields:

get_rsc_field reads a field value from the current restricted shell
command.

set_rsc_field sets a field value in the current restricted shell command.

list_rs_envs

Use the list_rs_envs command to check Active Directory and print a list of
restricted shell environments defined within the currently selected zone to
stdout. Use the get_rs_envs command to return a Tcl list.

• • • • • •

ADEdit command reference 322

Zone type

Classic only

Syntax

list_rs_envs

Abbreviation

lsrse

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command prints the list of restricted shell environments to stdout. It has
no return value.

Examples

list_rs_envs

This example displays the list of restricted shell environments.

restrict_env1

restrict_env2

• • • • • •

ADEdit Command Reference and Scripting Guide 323

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with restricted shell environments:

get_rs_envs returns a Tcl list of restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

After you have a restricted shell environment stored in memory, you can use
the following commands to work with its fields:

delete_rs_env deletes the current restricted shell environment from
Active Directory and from memory.

get_rse_field reads a field value from the current restricted shell
environment.

save_rs_env saves the restricted shell environment to Active Directory.

set_rse_field sets a field value in the current restricted shell
environment.

list_zone_computers

Use the list_zone_computers command to check Active Directory and return
a list of zone computers defined within the currently selected zone. If executed
in a script, this command outputs its list to stdout so that the output appears
in the shell where the script is executed. The command does not return a Tcl
list back to the executing script. Use get_zone_computers to return a Tcl list.

Zone type

Classic and hierarchical

• • • • • •

ADEdit command reference 324

Syntax

list_zone_computers

Abbreviation

lszc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of zone computers defined in the
currently selected zone. Each zone computer entry includes the following
fields, separated by colons (:):

User principal name (UPN) of the computer.

Number of CPUs in the computer and the version of Centrify software
installed on the computer.

Name of the computer in DNS.

Examples

list_zone_computers

This example returns the list of computers similar to this:

printserv$@acme.com:cpus (1) agentVersion (CentrifyDC
5.0.0): printserv.acme.com

• • • • • •

ADEdit Command Reference and Scripting Guide 325

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
zone computer:

get_zone_computers returns a Tcl list of the Active Directory names of all
zone computers in the current zone.

new_zone_computer creates a new zone computer and stores it in
memory.

select_zone_computer retrieves a zone computer from Active Directory
and stores it in memory.

After you have a zone computer stored in memory, you can use the following
commands to work with that zone computer:

delete_zone_computer deletes the zone computer from Active Directory
and from memory.

get_zone_computer_field reads a field value from the currently selected
zone computer.

save_zone_computer saves the zone computer with its current settings
to Active Directory.

set_zone_computer_field sets a field value in the currently selected zone
computer.

list_zone_groups

Use the list_zone_groups command to check Active Directory and return a
list of zone groups defined in the currently selected zone. If executed in a
script, this command outputs its list to stdout so that the output appears in
the shell where the script is executed. The command does not return a Tcl list
back to the executing script. Use get_zone_groups to return a Tcl list.

Zone type

Classic and hierarchical

• • • • • •

ADEdit command reference 326

Syntax

list_zone_groups

Abbreviation

lszg

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of zone groups defined in the currently
selected zone. Each entry in the list contains the following fields, separated by
colons (:):

User principal name of the zone group as it is stored in Active Directory.

UNIX group name.

Numeric group identifier (GID).

The string “Required” if the “Users are required to be members of this
group” option is set for the group.

Examples

list_zone_groups

This example returns the list of groups similar to this:

• • • • • •

ADEdit Command Reference and Scripting Guide 327

sf-admins@pistolas-org:sfadmins:10F24
sf-apps@pistolas.org:sf-apps:2201

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
zone groups:

get_zone_groups returns a Tcl list of the Active Directory names of the
zone groups in the current zone.

new_zone_group creates a new zone group and stores it in memory.

select_zone_group retrieves a zone group from Active Directory and
stores it in memory.

After you have a zone group stored in memory, you can use the following
commands to work with that zone group:

delete_zone_group deletes the selected zone group from Active
Directory and from memory.

get_zone_group_field reads a field value from the currently selected zone
group.

save_zone_group saves the selected zone group with its current settings
to Active Directory.

set_zone_group_field sets a field value in the currently selected zone
group.

list_zone_users

Use the list_zone_users command to check Active Directory and return a
list of zone users defined in the currently selected zone. If executed in a script,
this command outputs its list to stdout so that the output appears in the
shell where the script is executed. The command does not return a Tcl list
back to the executing script. Use get_zone_users to return a Tcl list.

• • • • • •

ADEdit command reference 328

Zone type

Classic and hierarchical

Syntax

list_zone_users [-upn]

Abbreviation

lszu

Options

This command takes the following option:

Option Description
-upn Optional. Returns user names in user principal name (UPN) format rather

than the default sAMAccount@domain format.

Arguments

This command takes no arguments.

Return value

This command returns a list to stdout of zone users for the currently selected
zone. Each entry in the list contains the following user profile fields separated
by colons (:):

sAMAccountName@domain or the UPN of the zone user as it is stored in
Active Directory.

• • • • • •

ADEdit Command Reference and Scripting Guide 329

If the Active Directory user no longer exists for a zone user, the
command returns the security identifier (SID) of the orphan user.

UNIX user name.

Numeric user identifier (UID).

Numeric identifier for the user’s primary group (GID).

If the GID has the number 2147483648 (which is 80000000 hex) it means
that the UID is being used as the GID. (This can occur in hierarchical
zones.)

Personal information from the GECOS field.

The user’s home directory.

The user’s default login shell.

Whether the user is enabled or disabled (in classic zones only).

Examples

list_zone_users

This example returns the list of users similar to this:

adam.avery@acme.com:adam:10001:10001:%{u:samaccountname}:%
{home}/%{user}:%{shell}:
ben.brown@acme.com:brenda:10002:10002:%{u:samaccountname}:%
{home}/%{user}:%{shell}:
chris.cain@acme.com:chris:10003:10003:%{u:samaccountname}:%
{home}/%{user}:%{shell}:

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
zone users:

get_zone_users returns a Tcl list of the Active Directory names of zone
users in the current zone.

new_zone_user creates a new zone user and stores it in memory.

• • • • • •

ADEdit command reference 330

select_zone_user retrieves a zone user from Active Directory and stores
it in memory.

After you have a zone user stored in memory, you can use the following
commands to work with that zone user:

delete_zone_user deletes the selected zone user from Active Directory
and from memory.

get_zone_user_field reads a field value from the currently selected zone
user.

save_zone_user saves the selected zone user with its current settings to
Active Directory.

set_zone_user_field sets a field value in the currently selected zone user.

manage_dz

Use the manage_dz command to enable or disable authorization in classic
zones. In classic zones, authorization-related features are disabled by default,
and the authorization store that is required for managing rights, roles, and
restricted environment is not available in Active Directory.

To enable authorization in classic zones using ADEdit, you can run the
manage_dz -on command. This command creates the authorization store if it
does not exist, and sets the zone property that enables privilege elevation
service features.

To disable authorization in a classic zone, you can run the manage_dz –off

command. Running this command disables authorization services. The
command does not remove any existing authorization data from Active
Directory.

Zone type

Classic only

Syntax

manage_dz [-on|-off]

• • • • • •

ADEdit Command Reference and Scripting Guide 331

Abbreviation

mnz

Options

This command takes the following options:

Option Description
-on Enables authorization for the currently selected zone and creates the

authorization data store if it not currently defined in Active Directory.

-off Disables authorization for the currently selected zone. This option does
not remove any data from the authorization data store if it currently exists.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

create_zone classic4 cn=c125,cn=zones,dc=ross,dc=net
select_zone cn=c125,cn=zones,dc=ross,dc=net
is_dz_enable
0
manage_dz -on
is_dz_enable
1

This code example creates a zone, checks that authorization is disabled by
default, then enables authorization for the zone.

• • • • • •

ADEdit command reference 332

Related commands

The following command performs actions related to this command:

is_dz_enabled checks whether authorization is currently enabled for a
zone.

move_object

Use the move_object command to move the selected object to the specified
location. The new location must be in the same domain. You cannot use this
command to move an object to another domain. You do not need to save the
object after moving it.

Zone type

Not applicable

Syntax

move_object destination

Abbreviation

mvo

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit Command Reference and Scripting Guide 333

Argument Type Description
destination string Required. Specifies the distinguished name of the new location.

Return value

This command returns nothing if it runs successfully.

Example

The following commands move the ApacheAdmins group from the Groups

container in the Global zone to the Groups container in the US zone.

select_object
“cn=ApacheAdmins@demo.test,cn=Groups,cn=Global,cn=Zones,cn=
Centrify,dc=demo,dc=test”
mvo “cn=Groups,cn=US,cn=Zones,ou=Centrify,dc=demo,dc=test”

Related commands

The following command performs actions related to this command:

select_object selects the object you want to move.

new_dz_command

Use the new_dz_command command to create a new UNIX command object for
the current zone and sets the new command as the currently selected
command in memory. The new command has no field values set. The new_dz_

command does not save the new command to Active Directory. To save the
UNIX command, you must first set at least the “command” field using set_

dzc_field, then use save_dz_command. If you don’t save a new UNIX
command, it will disappear when you select a new command or when the
ADEdit session ends.

• • • • • •

ADEdit command reference 334

You can only use the new_dz_command command if the currently selected zone
is a classic4 or hierarchical zone. The command does not work in other types
of zones.

Zone type

Classic and hierarchical

Syntax

new_dz_command name

Abbreviation

newdzc

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
name string Required. Specifies the name to assign to the new UNIX

command.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit Command Reference and Scripting Guide 335

Examples

new_dz_command account_manager

This example creates a new UNIX command named account_manager in the
current zone.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
UNIX commands:

get_dz_commands returns a Tcl list of UNIX commands in the current
zone.

list_dz_commands returns a list of all UNIX commands in the currently
selected zone.

select_dz_command retrieves a UNIX command from Active Directory
and stores it in memory.

After you have a UNIX command stored in memory, you can use the following
commands to work with that command:

delete_dz_command deletes the selected command from Active
Directory and from memory.

get_dzc_field reads a field value from the currently selected command.

save_dz_command saves the selected command with its current settings
to Active Directory.

set_dzc_field sets a field value in the currently selected command.

new_local_group_profile

Use the new_local_group_profile command to create an object for a local
UNIX or Linux group in the currently selected zone. After you create the group
object, it is automatically selected for editing with the set_local_group_

profile_field command. That is, you do not need to execute the select_

local_group_profile command to select the new group prior to defining

• • • • • •

ADEdit command reference 336

profile fields. After you create the new group, save it by executing the save_

local_group_profile command.

When the group profile is complete and the profileflag field is set to 1

(enabled), the profile is added to /etc/group on each UNIX and Linux
computer in the zone at the next local account refresh interval. A group
profile must have the following fields (attributes) to be considered complete:

A unique numeric identifier (GID).

A group name.

See the Administrator’s Guide for Linux and UNIX for more details about creating
local group profiles.

Zone type

Hierarchical only.

Syntax

new_local_group_profile group_name

Abbreviation

newlgp

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit Command Reference and Scripting Guide 337

Argument Type Description
group_
name

string Required. Specifies the UNIX name of the new local group to
create in the zone.

Return value

This command returns nothing if it runs successfully.

Examples

The following example shows a typical sequence of commands to create an
object for the local UNIX or Linux group marketing in the currently selected
zone. This command sequence creates a complete group profile, and sets the
profile flag to 1 (enabled) so that the profile is added to /etc/group at the
next local account update interval.

new_local_group_profile marketing
set_local_group_profile_field gid 3004
set_local_group_profile_field member lam_usr4
set_local_group_profile_field profileflag 1
save_local_group_profile

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

• • • • • •

ADEdit command reference 338

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

new_local_user_profile

Use the new_local_user_profile command to create an object for a local
UNIX or Linux user in the currently selected zone. After you create the user

• • • • • •

ADEdit Command Reference and Scripting Guide 339

object, it is automatically selected for editing with the set_local_user_

profile_field command. That is, you do not need to execute the select_

local_user_profile command to select the new user prior to defining
profile fields. After you create the new user, save it by executing the save_

local_user_profile command.

Unlike local groups, which are visible by default, you must explicitly
assign local users to a visible role. If you do not assign a local user to a
visible role, the user profile defined in the zone object is not updated in
/etc/passwd on local computers. A predefined visible role for local
users, local listed, is provided to make local users visible. After you
create a local user profile, you must assign the local user to the local

listed role, or to another visible role. You can use the select_role_

assignment and new_role_assignment ADEdit commands to make
role assignments.

When the user profile is complete and the profileflag field is set to 1

(enabled) or 2 (disabled), the profile is added to /etc/passwd on each UNIX
and Linux computer in the zone at the next local account refresh interval.

A user profile must have the following fields (attributes) to be considered
complete:

A user name (the UNIX login name).

A unique numeric user identifier (UID).

The user’s primary group profile numeric identifier (GID).

The default home directory for the user.

The default login shell for the user.

Note that the GECOS field is not required.

See the Administrator’s Guide for Linux and UNIX for more details about creating
local user profiles.

Zone type

Hierarchical only.

• • • • • •

ADEdit command reference 340

Syntax

new_local_user_profile user_name

Abbreviation

newlup

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
user_name string Required. Specifies the UNIX name of the new local user to

create in the zone.

Return value

This command returns nothing if it runs successfully.

Examples

The following example shows a typical sequence of commands to create an
object for the local UNIX or Linux user lam_usr4 in the currently selected
zone. This command sequence creates a complete user profile, sets the
profile flag to 1 (enabled), and adds the user to the local listed role so that
the profile is added to /etc/passwd at the next local account update interval.

new_local_user_profile lam_usr4
set_local_user_profile_field uid 2004

• • • • • •

ADEdit Command Reference and Scripting Guide 341

set_local_user_profile_field gid 2004
set_local_user_profile_field shell /bin/bash
set_local_user_profile_field home /home/lam_usr4
set_local_user_profile_field profileflag 1
save_local_user_profile
select_role_assignment local listed
new_role_assignment lam_usr4

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

• • • • • •

ADEdit command reference 342

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

new_nis_map

Use the new_nis_map command to create a new NIS map for the current zone
and set the new NIS map as the currently selected NIS map in memory. The
new NIS map has no map entries.

The new_nis_map does not save the new NIS map to Active Directory. To save
the new map, you must use save_nis_map. If you don’t save a new NIS map, it
will disappear when you select a new NIS map or when the ADEdit session
ends.

Zone type

Not applicable

Syntax

new_nis_map [-automount] map

• • • • • •

ADEdit Command Reference and Scripting Guide 343

Abbreviation

newnm

Options

This command takes the following option:

Option Description
-
automount

Specifies that the new NIS map is an automount map.

For most NIS maps, the map name defines the type of map you are
creating. For example, if you create a new NIS map with the name
netgroup, it must be a NIS netgroup map and contain valid
netgroup entries. However, you can specify any name for NIS
automount maps. Use this option to identify automount maps that
have a name other than automount.

Arguments

This command takes the following argument:

Argument Type Description
map string Required. Specifies the name of the new NIS map.

For most NIS maps, the map name defines the type of map you
are creating. For example, if you create a new NIS map with the
name netgroup, it must be a NIS netgroup map and contain
valid netgroup entries. For information about the type of NIS
maps you can create, see theNetwork Information Service
Administrator’s Guide.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit command reference 344

Examples

The following command creates the NIS map “Printers” in the current zone.

new_nis_map Printers

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select NIS
maps:

get_nis_maps returns a Tcl list of NIS maps in the current zone.

list_nis_maps lists to stdout the NIS maps in the current zone.

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map:

add_map_entry or add_map_entry_with_comment adds an entry to the
current NIS map stored in memory.

delete_map_entry removes an entry from the current NIS map.

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

get_nis_map or get_nis_map_with_comment returns a Tcl list of the map
entries in the current NIS map.

get_nis_map_field reads a field value from the current NIS map.

list_nis_map or list_nis_map_with_comment lists to stdout the map
entries in the current NIS map.

save_nis_map saves the selected NIS map with its current entries to
Active Directory.

• • • • • •

ADEdit Command Reference and Scripting Guide 345

new_object

Use the new_object command to create a new Active Directory object and set
the new object as the currently selected Active Directory object in memory.
The new object has no field values set. The new_object command does not
save the new object to Active Directory. To save the new object, you must use
save_object. If you don’t save a new object, it will disappear when you select
a new object or when the ADEdit session ends.

The new_object command does not check to see if the new object conforms
to Active Directory’s expectations for the new object in the location you
specify. Active Directory will report any errors when you try to save the object.

Zone type

Not applicable

Syntax

new_object dn

Abbreviation

newo

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit command reference 346

Argument Type Description
dn DN Required. Specifies the distinguished name for the new object.

Return value

This command returns nothing if it runs successfully.

Examples

new_object “ou=Centrify,cn=Program Data,dc=acme,dc=com”

This example creates a new organizational unit Centrify in the container
Program Data in the domain acme.com and stores it in memory as the
currently selected Active Directory object.

Related commands

The following commands enable you to view and select Active Directory
objects:

get_objects performs an LDAP search of Active Directory and returns a
Tcl list of the distinguished names of objects matching the specified
search criteria.

select_object retrieves an object with its attributes from Active Directory
and stores it in memory.

After you have an object stored in memory, you can use the following
commands to work with that object:

add_object_value adds a value to a multi-valued field attribute of the
currently selected Active Directory object.

delete_object deletes the selected Active Directory object from Active
Directory and from memory.

delete_sub_tree deletes an Active Directory object and all of its children
from Active Directory.

• • • • • •

ADEdit Command Reference and Scripting Guide 347

get_object_field reads a field value from the currently selected Active
Directory object.

remove_object_value removes a value from a multi-valued field attribute
of the currently selected Active Directory object.

save_object saves the selected Active Directory object with its current
settings to Active Directory.

set_object_field sets a field value in the currently selected Active
Directory object.

new_pam_app

Use the new_pam_app command to create a new PAM application right for the
current zone and set the new PAM application as the currently selected PAM
application in memory. The new PAM application has no field values set.

The new_pam_app does not save the new PAM application to Active Directory.
To save the PAM application right, you must first set at least the “application”
field using set_pam_field, then use save_pam_app. If you don’t save a new
PAM application, it will disappear when you select a new PAM application or
when the ADEdit session ends.

You can only use the new_pam_app to create PAM application rights if the
currently selected zone is a classic4 or hierarchical zone. The command does
not work in other types of zones.

Zone type

Classic and hierarchical

Syntax

new_pam_app name

Abbreviation

newpam

• • • • • •

ADEdit command reference 348

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
name string Required. Specifies the name to assign to the new PAM

application access right.

Return value

This command returns nothing if it runs successfully.

Examples

new_pam_app basic

This example creates a new PAM application access right named basic in the
current zone.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
PAM application rights:

get_pam_apps returns a Tcl list of PAM application rights in the current
zone.

list_pam_apps lists to stdout the PAM application rights in the currently
selected zone.

select_pam_app retrieves a PAM application right from Active Directory
and stores it in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 349

After you have a PAM application right stored in memory, you can use the
following commands to work with that PAM application right:

delete_pam_app deletes the selected PAM application right from Active
Directory and from memory.

get_pam_field reads a field value from the currently selected PAM
application right.

save_pam_app saves the selected PAM application right with its current
settings to Active Directory.

set_pam_field sets a field value in the currently selected PAM application
right.

new_role

Use the new_role command to create a new role for the current zone and set
the new role as the currently selected role in memory. The new role has no
field values set. The new_role command does not save the new role to Active
Directory. To save the new role, you must use save_role. If you don’t save a
new role, it will disappear when you select another role or when the ADEdit
session ends.

You can only use the new_role to create a role if the currently selected zone is
a classic4 or hierarchical zone. The command does not work in other types of
zones.

Zone type

Classic and hierarchical

Syntax

new_role name

Abbreviation

newr

• • • • • •

ADEdit command reference 350

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
name string Required. Specifies the name to assign to the new role.

Return value

This command returns nothing if it runs successfully.

Examples

new_role customerservice

This example creates a new role named customerservice in the current zone.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
roles:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout the roles in the current zone.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with that role:

• • • • • •

ADEdit Command Reference and Scripting Guide 351

add_command_to_role adds a UNIX command to the current role.

add_pamapp_to_role adds a PAM application to the current role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM applications associated with
the currently selected role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the current role.

get_role_field reads a field value from the currently selected role.

list_role_rights returns a list of all UNIX commands and PAM application
rights associated with the current role.

remove_command_from_role removes a UNIX command from the
current role.

remove_pamapp_from_role removes a PAM application from the current
role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the currently selected role.

new_role_assignment

Use the new_role_assignment command to create a new role assignment for
the current zone and set the new role assignment as the currently selected
role assignment in memory. The new role assignment has no field values set.

The new_role_assignment command does not save the new role assignment
to Active Directory. To save the role assignment, you must first set at least the
“role” field using set_role_assignment_field, then use save_role_

assignment. If you don’t save a new role assignment, it will disappear when
you select another role assignment or when the ADEdit session ends.

You can only use the new_role_assignment to create a role assignment if the
currently selected zone is a classic4 or hierarchical zone. The command does
not work in other types of zones.

• • • • • •

ADEdit command reference 352

Zone type

Classic and hierarchical

Syntax

new_role_assignment user|All AD users|All Unix users

Abbreviation

newra

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
user | All
AD users |
All Unix
users

string Required. Specifies the user or group to assign the role to.

This argument can be a user principal name (UPN) or a
sAMAccountName if you are assigning a role to an Active
Directory user or group, a UNIX user name or UID if assigning
the role to a local UNIX user, or the UNIX group name if you
assigning the role to a local UNIX group.

To assign a role to a local UNIX account, use the following
format:

oracle@localhost

To assign the role to a domain user, use the following format:

oracle@domain.name

You can also specify “All AD users” to assign a selected role to

• • • • • •

ADEdit Command Reference and Scripting Guide 353

Argument Type Description
all Active Directory users or “All Unix users” to assign the
selected role to all local UNIX users.

This argument is not supported if the selected zone is a
classic4 zone.

Return value

This command returns nothing if it runs successfully.

Examples

new_role_assignment adam.avery@acme.com

This example creates a new role assignment for adam.avery@acme.com in the
current zone. You must set at least one role assignment field and an available
time for the role to be effective.

The following example creates a new role assignment for the local UNIX user
oracle in the current zone.

new_role_assignment oracle@localhost

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
role assignment to work with:

get_role_assignments returns a Tcl list of role assignments in the current
zone.

list_role_assignments lists to stdout the role assignments in the current
zone.

select_role_assignment retrieves a role assignment from Active Directory
and stores it in memory.

• • • • • •

ADEdit command reference 354

After you have a role assignment stored in memory, you can use the following
commands to work with that role assignment’s attributes, delete the role
assignment, or save information for the role assignment:

delete_role_assignment deletes the selected role assignment from Active
Directory and from memory.

get_role_assignment_field reads a field value from the currently selected
role assignment.

save_role_assignment saves the selected role assignment with its
current settings to Active Directory.

set_role_assignment_field sets a field value in the currently selected role
assignment.

new_rs_command

Use the new_rs_command command to create a new restricted shell command
under the currently selected restricted shell environment and set the new
restricted shell command as the currently selected restricted shell command
in memory. The umask field for the new restricted shell command is set to a
default value of 077 and default priority field (pri) is set to 0. For more
information about restricted shell command fields, see the command
description for get_rsc_field.

The new_rs_command command does not save the new restricted shell
command to Active Directory. To store the new restricted shell command in
Active Directory, you must use save_rs_command. If you don’t save a new
restricted shell command, it will disappear when you select another restricted
shell command or when the ADEdit session ends.

You can only use the new_rs_command command if the currently selected zone
is a classic4 zone. The command does not work in other types of zones.

Zone type

Classic only

• • • • • •

ADEdit Command Reference and Scripting Guide 355

Syntax

new_rs_command name

Abbreviation

newrsc

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
name string Required. Specifies the name to assign to the new restricted

shell command.

Return value

This command returns nothing if it runs successfully.

Examples

new_rs_command rsc1

This example creates a new restricted shell command named rsc1 in the
current zone.

• • • • • •

ADEdit command reference 356

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
restricted shell command to work with:

get_rs_commands returns a Tcl list of restricted shell commands in the
current zone.

list_rs_commands lists to stdout the restricted shell commands in the
current zone.

select_rs_command retrieves a restricted shell command from Active
Directory and stores it in memory.

After you have a restricted shell command stored in memory, you can use the
following commands to work with that restricted shell:

delete_rs_command deletes the selected command from Active
Directory and from memory.

get_rsc_field reads a field value from the currently selected command.

save_rs_command saves the selected command with its current settings
to Active Directory.

set_rsc_field sets a field value in the currently selected command.

new_rs_env

Use the new_rs_env command to create a new restricted shell environment
for the current zone and set the new restricted shell environment as the
currently selected restricted shell environment stored in memory. The new
restricted shell environment has no field values set.

The new_rs_env command does not save the new restricted shell
environment to Active Directory. To save the new restricted shell environment
to Active Directory, you must use the save_rs_env command. If you don’t
save a new restricted shell environment, it will disappear when you select
another restricted shell environment or when the ADEdit session ends.

You can only use the new_rs_env command if the currently selected zone is a
classic4 zone. The command does not work in other types of zones.

• • • • • •

ADEdit Command Reference and Scripting Guide 357

Zone type

Classic only

Syntax

new_rs_env name

Abbreviation

newrse

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
name string Required. Specifies the name to assign to the new restricted

shell environment.

Return value

This command creates a new restricted shell environment in the currently
selected zone.

Examples

new_rs_envs rse3

• • • • • •

ADEdit command reference 358

This example creates a new restricted environment named rse3 in the
current zone.

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with restricted shell environments:

get_rs_envs returns a Tcl list of restricted shell environments.

list_rs_envs lists to stdout the restricted shell environments.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

After you have a restricted shell environment stored in memory, you can use
the following commands to work with its fields:

delete_rs_env deletes the current restricted shell environment from
Active Directory and from memory.

get_rse_field reads a field value from the current restricted shell
environment.

save_rs_env saves the restricted shell environment to Active Directory.

set_rse_field sets a field value in the current restricted shell
environment.

new_zone_computer

Use the new_zone_computer command to create a new zone computer in the
current zone and set the new zone computer as the currently selected zone
computer in memory. The new zone computer has no field values set.

The new_zone_computer command does not save the new zone computer to
Active Directory. To save the new zone computer, you must use save_zone_

computer. If you don’t save a new zone computer, it will disappear when you
select another zone computer or when the ADEdit session ends.

• • • • • •

ADEdit Command Reference and Scripting Guide 359

The new_zone_computer command requires you to specify an Active Directory
computer account name. If the computer name you specify is not found in
Active Directory, the command does not create the zone computer.

Zone type

Classic and hierarchical

Syntax

new_zone_computer sAMAccountName@domain

Abbreviation

newzc

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
sAMAccountName
@domain

string Required. Specifies the sAMAccountName of an Active
Directory computer followed by @ and the domain name
where the computer is located.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit command reference 360

Examples

new_zone_computer sales2$@acme.com

This example creates a new zone computer sales2@acme.com in the current
zone. Note that Tcl syntax requires “$@” to represent a literal “@”. You could
also enclose the argument in braces: {sales2@acme.com}.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and manage
the zone computers:

get_zone_computers returns a Tcl list of the Active Directory names of all
zone computers in the current zone.

list_zone_computers lists to stdout the zone computers in the current
zone.

new_zone_computer creates a new zone computer and stores it in
memory.

select_zone_computer retrieves a zone computer from Active Directory
and stores it in memory.

After you have a zone computer stored in memory, you can use the following
commands to work with that zone computer:

delete_zone_computer deletes the zone computer from Active Directory
and from memory.

get_zone_computer_field reads a field value from the currently selected
zone computer.

save_zone_computer saves the zone computer with its current settings
to Active Directory.

set_zone_computer_field sets a field value in the currently selected zone
computer.

• • • • • •

ADEdit Command Reference and Scripting Guide 361

new_zone_group

Use the new_zone_group command to create a new group in the current zone
that is based on an existing Active Directory group. If the command is
successful, the new zone group becomes the currently selected zone group
stored in memory.

The new_zone_group command does not set any field values or save the new
zone group to Active Directory. Before you can save the new zone group, you
must first set at least one field for the new zone group using the set_zone_

group_field command. You can then save the zone group profile using the
save_zone_group command.

If the currently selected zone is a classic zone, you must set all fields
for the new zone group before saving the group profile.

If you don’t save a new zone group, it will disappear when you select another
zone group or end the ADEdit session.

The new_zone_group command requires you to specify an Active Directory
group name. The command will search for the group first by the supplied UPN
in the specified domain, then by the sAMAccountname in the specified domain,
then by the supplied UPN in any bound domain. If the group name cannot be
found, the new zone group is not created.

Zone type

Classic and hierarchical

Syntax

new_zone_group AD_group_UPN

Abbreviation

newzg

• • • • • •

ADEdit command reference 362

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
AD_group_
UPN

string Required. Specifies the user principal name (UPN) of an Active
Directory group.

Return value

This command returns nothing if it runs successfully.

Examples

new_zone_group poweradmins@acme.com

This example creates a new zone group named poweradmins@acme.com in the
current zone.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
zone groups:

get_zone_groups returns a Tcl list of the Active Directory names of all
zone groups in the current zone.

list_zone_groups lists to stdout the zone groups in the current zone.

select_zone_group retrieves a zone group from Active Directory and
stores it in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 363

After you have a zone group stored in memory, you can use the following
commands to work with that zone group:

delete_zone_group deletes the selected zone group from Active
Directory and from memory.

get_zone_group_field reads a field value from the current zone group.

save_zone_group saves the selected zone group with its current settings
to Active Directory.

set_zone_group_field sets a field value in the current zone group.

new_zone_user

Use the new_zone_user command to create a new zone user in the current
zone based on an existing Active Directory user. If the command is successful,
the new zone user becomes the currently selected zone user stored in
memory.

The new_zone_user command does not set any field values or save the new
zone user to Active Directory. Before you can save the new zone user, you
must first set at least one field value using the set_zone_user_field

command. You can then save the zone user profile using the save_zone_user

command.

If the currently selected zone is a classic zone, you must set all fields
for the new zone user before saving the user profile.

If you don’t save a new zone user, it will disappear when you select another
zone user or end the ADEdit session.

You can create more than one zone user within a zone based on a single
Active Directory user. The first zone user you create uses the Active Directory
user’s user principal name (UPN), for example, martin.moore@acme.com. Any
other zone users you create for the same Active Directory user must use
aliases. An alias is the Active Directory user’s UPN with “+n” appended where n

is a positive integer that is unique for this Active Directory user in this zone.
For example, martin.moore@acme.com+1 is an alias, as is
martin.moore@acme.com+5. Alias integers need not be consecutive or in
order. (Note that SFU zones do not support user aliases.)

• • • • • •

ADEdit command reference 364

The new_zone_user command requires you to specify Active Directory user
name. The command will search for the user first by the supplied UPN in the
specified domain, then by the sAMAccountname in the specified domain, then
by the supplied UPN in any bound domain. If the user name cannot be found,
the new zone user is not created.

Zone type

Classic and hierarchical

Syntax

new_zone_user AD_user_UPN

Abbreviation

newzu

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
AD_user_
UPN

string Required. Specifies the user principal name (UPN) of an Active
Directory user. If you are specifying an alias, append the UPN
with “+” followed by a positive integer that is unique for this
user and the zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 365

Return value

This command returns nothing if it runs successfully.

Examples

new_zone_user adam.avery@acme.com

This example creates a new zone user based on the Active Directory user
adam.avery@acme.com in the current zone.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
zone user:

get_zone_users returns a Tcl list of the Active Directory names of all zone
users in the current zone.

list_zone_users lists to stdout the zone users and their NSS data in the
current zone.

select_zone_user retrieves a zone user from Active Directory and stores
it in memory.

After you have a zone user stored in memory, you can use the following
commands to work with that zone user:

delete_zone_user deletes the selected zone user from Active Directory
and from memory.

get_zone_user_field reads a field value from the currently selected zone
user.

save_zone_user saves the selected zone user with its current settings to
Active Directory.

set_zone_user_field sets a field value in the currently selected zone user.

• • • • • •

ADEdit command reference 366

pop

Use the pop command to retrieve a previously-stored context of bindings and
selected objects from the top of the context stack. This command replaces the
current ADEdit context with the retrieved context. Popping a context from the
context stack removes the context from the stack.

This command is useful for Tcl scripts that use subroutines. A push can save
the context before it’s altered in the subroutine; a pop can return the saved
context when the subroutine returns.

Zone type

Not applicable

Syntax

pop

Abbreviation

None.

Options

This command takes no options.

Arguments

This command takes no arguments.

• • • • • •

ADEdit Command Reference and Scripting Guide 367

Return value

This command returns nothing if it runs successfully. If the stack is empty, it
returns a message stating so.

Examples

pop

This example retrieves the context from the top of the context stack and uses
it as the current ADEdit context.

Related commands

The following commands perform actions related to this command:

show returns the current context of ADEdit, including its bound domains
and its currently selected objects.

push saves the current ADEdit context to the ADEdit context stack.

principal_from_sid

Use the principal_from_sid command look up the security principal for a
specified security identifier (SID) in Active Directory. If the security identifier is
found, the command returns the Active Directory name of the principal.

Zone type

Not applicable

Syntax

principal_from_sid [-upn] sid

• • • • • •

ADEdit command reference 368

Abbreviation

pfs

Options

This command takes the following option:

Option Description
-upn Returns the user names in user principal name (UPN) format, not the

default sAMAccount@domain format.

Arguments

This command takes the following argument:

Argument Type Description
sid string Required. Specifies the security identifier of an Active Directory

security principal.

Return value

This command returns the Active Directory name of the principal if it finds a
principal. If it does not find a principal, it returns a message stating so.

Examples

principal_from_sid S-1-5-21-2076040321-3326545908-
468068287-1159

This example returns the principal name: oracle_machines@acme.com

• • • • • •

ADEdit Command Reference and Scripting Guide 369

Related commands

The following commands perform actions related to this command:

principal_to_dn searches Active Directory for a user principal name
(UPN) and, if found, returns the corresponding distinguished name (DN).

dn_to_principal searches Active Directory for a distinguished name (DN)
and, if found, returns the corresponding user principal name (UPN).

principal_to_dn

Use the principal_to_dn command to search Active Directory for the
specified user principal name (UPN) of a security principal (user, machine, or
group). If a security principal is found for the specified UPN, the command
returns the distinguished name (DN) of the principal.

Zone type

Not applicable

Syntax

principal_to_dn principal_upn

Abbreviation

ptd

Options

This command takes no options.

• • • • • •

ADEdit command reference 370

Arguments

This command takes the following argument:

Argument Type Description
principal_
upn

string Required. Specifies the user principal name (UPN) of a security
principal.

Return value

This command returns a distinguished name. If the command doesn’t find the
specified security principal in Active Directory, it presents a message that it
didn’t find the principal.

Examples

principal_to_dn brenda.butler@acme.com

This example returns the distinguished name for the specified UPN:

cn=brenda butler,cn=users,dc=acme,dc=com

Related commands

The following commands perform actions related to this command:

dn_from_domain converts a domain’s dotted name to a distinguished
name.

get_parent_dn returns the parent of an LDAP path as a distinguished
name.

get_rdn returns the relative distinguished name of an LDAP path.

dn_to_principal searches Active Directory for a distinguished name, and,
if found, returns the corresponding user principal name (UPN).

principal_from_sid searches Active Directory for a security identifier and
returns the security principal associated with the security identifier.

• • • • • •

ADEdit Command Reference and Scripting Guide 371

principal_to_id

Use the principal_to_id command to search Active Directory for the
specified user principal name (UPN) of a user or group security principal. If a
security principal is found for the specified UPN, the command returns the
numeric identifier for the principal.

Zone type

Not applicable

Syntax

principal_to_id [-apple] upn

Abbreviation

pti

Options

This command takes the following option:

Option Description
-apple Specifies that you want to use the Apple scheme for generating the UID or

GID for the specified user or group principal.

If you don’t specify this option, the UID or GID returned is based on the
Centrify Auto Zone scheme.

Arguments

This command takes the following argument:

• • • • • •

ADEdit command reference 372

Argument Type Description
upn string Required. Specifies the user principal name (UPN) of a user or

group security principal.

Return value

This command returns a unique UID or GID based on either the Apple
methodology or the Centrify Auto Zone methodology for generating numeric
identifiers. If the user or group principal is not found in Active Directory, the
command returns an error message indicating that it didn’t find the principal.

Examples

principal_to_id -apple brenda.butler@acme.com

This example returns the UID for the specified user generated using the Apple
scheme:

1983765448

Related commands

The following commands perform actions related to this command:

guid_to_id accepts a globally unique identifier (GUID) for a user or group
and returns a UID or GID generated using the Apple scheme.

principal_from_sid searches Active Directory for a security identifier and
returns the security principal associated with the security identifier.

push

Use the push command to save the current ADEdit context—its bindings and
selected objects in memory—to a context stack. This command leaves the
current context in place, so all current bindings and selected objects remain
in effect in ADEdit after the push.

• • • • • •

ADEdit Command Reference and Scripting Guide 373

This command is useful for Tcl scripts that use subroutines. You can use the
push command to save the context before it’s altered in the subroutine. You
can then use the pop command to retrieve the saved context when the
subroutine returns.

Zone type

Not applicable

Syntax

push

Abbreviation

None.

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing.

Examples

push

• • • • • •

ADEdit command reference 374

The example saves the current ADEdit context.

Related commands

The following commands perform actions related to this command:

show returns the current context of ADEdit, including its bound domains
and currently selected objects.

pop restores the context from the top of the ADEdit context stack to
ADEdit.

quit

Use the quit command to quit ADEdit and return to the shell from which
ADEdit was launched. You can also end an interactive ADEdit session by
pressing Ctrl-D or entering exit.

If you enter the exit command, understand that it will terminate the
session immediately without performing a commit operation.

Zone type

Not applicable

Syntax

quit

Abbreviation

q

• • • • • •

ADEdit Command Reference and Scripting Guide 375

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing.

Examples

quit

This example ends an ADEdit session.

Related commands

None.

remove_command_from_role

Use the remove_command_from_role command to remove a UNIX command
from the currently selected role stored in memory.

The remove_command_from_role command does not change the role as it is
stored in Active Directory. You must save the role before the removed
command takes effect in Active Directory. If you select another role or quit
ADEdit before saving the role, any UNIX commands you have removed since
the last save won’t take effect.

• • • • • •

ADEdit command reference 376

You can only use the remove_command_from_role command if the currently
selected zone is a classic4 or hierarchical zone. The command does not work
in other types of zones.

Zone type

Classic and hierarchical

Syntax

remove_command_from_role command[/zonename]

Abbreviation

rcfr

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
command
[/zonename]

string Required. Specifies the name of a UNIX command to remove
from the currently selected role.

If the UNIX command that you want to remove is defined in the
current zone, the zonename argument is optional. If the UNIX
command right is defined in a zone other than the currently
selected zone, the zonename argument is required to identify
the specific command to remove.

• • • • • •

ADEdit Command Reference and Scripting Guide 377

Return value

This command returns nothing if it runs successfully.

Examples

remove_command_from_role basicshell/global

This example removes the UNIX command named basicshell, which is
defined in the global zone, from the currently selected role.

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout the roles in the current zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with that role:

add_command_to_role adds a UNIX command to the current role.

add_pamapp_to_role adds a PAM application to the current role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM applications associated with
the current role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the current role.

• • • • • •

ADEdit command reference 378

list_role_rights returns a list of all UNIX commands and PAM applications
associated with the current role.

remove_pamapp_from_role removes a PAM application from the current
role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the current role.

remove_object_value

Use the remove_object_value command to remove a value from a multi-
valued attribute of a specified Active Directory object. This command only
affects the specified attribute for specified object in Active Directory. The
command does not change the currently selected Active Directory object in
memory, if there is one.

If the field or value to be removed isn’t valid, Active Directory will report an
error and remove_object_value won’t remove the value.

This command is useful for fields that may be very large—members of a
group, for example.

Zone type

Not applicable

Syntax

remove_object_value dn field value

Abbreviation

rov

• • • • • •

ADEdit Command Reference and Scripting Guide 379

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
dn string Required. Specifies the distinguished name (DN) of the Active

Directory object from which to remove a value.

field string Required. Specifies the name of a multi-valued attribute in the
currently selected Active Directory object from which to remove
the value.

This argument can be any field that is valid for the type of the
Active Directory object you have specified using the dn
argument. For example, if the Active Directory object specified
is a computer object, the field argument might be
operatingSystem.

value Required. Specifies the value to remove from the field. The
data type of the value depends on the field you specify.

Return value

This command returns nothing if it runs successfully.

Examples

remove_object_value cn=groups,dc=acme,dc=com users
adam.avery

This example removes the value adam.avery from the users field of the
groups object in Active Directory.

• • • • • •

ADEdit command reference 380

Related commands

The following commands enable you to view and select the object to work
with:

get_objects performs an LDAP search of Active Directory and returns a
Tcl list of the distinguished names of objects matching the search
criteria.

new_object creates a new Active Directory object and stores it in
memory.

select_object retrieves an object and its attributes from Active Directory
and stores it in memory.

After you have an Active Directory object stored in memory, you can use the
following commands to work with that object’s attributes, delete the object, or
save information for the object:

add_object_value adds a value to a multi-valued field attribute of the
currently selected Active Directory object.

delete_object deletes the selected Active Directory object from Active
Directory and from memory.

delete_sub_tree deletes an Active Directory object and all of its children
from Active Directory.

get_object_field reads a field value from the currently selected Active
Directory object.

save_object saves the selected Active Directory object with its current
settings to Active Directory.

set_object_field sets a field value in the currently selected Active
Directory object.

remove_pamapp_from_role

Use the remove_pamapp_from_role command to remove a PAM application
access right from the currently selected role stored in memory.

The remove_pamapp_from_role command does not change the role as it is
stored Active Directory. To remove the PAM application right from the role

• • • • • •

ADEdit Command Reference and Scripting Guide 381

stored in Active Directory, you must save your changes using the save_role
command. If you select another role or quit ADEdit before saving the role, any
PAM applications you’ve removed since the last save won’t take effect.

You can only use the remove_pamapp_from_role command if the currently
selected zone is a classic4 or hierarchical zone. The command does not work
in other types of zones.

Zone type

Classic and hierarchical

Syntax

remove_pamapp_from_role app[/zonename]

Abbreviation

rpamfr

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
app
[/zonename]

string Required. Specifies the name of a PAM application right to
remove from the currently selected role.

If the PAM application right that you want to remove is defined
in the current zone, the zonename argument is optional. If the
PAM application right is defined in a zone other than the

• • • • • •

ADEdit command reference 382

Argument Type Description
currently selected zone, the zonename argument is required to
identify the specific PAM application right to remove.

Return value

This command returns nothing if it runs successfully.

Examples

remove_pamapp_from_role ftp-all

This example removes the PAM application right named ftp-all defined in
the currently selected zone from the currently selected role.

To remove the PAM application right when it is defined in the seattle zone,
you would include the zone name:

remove_pamapp_from_role ftp-all/seattle

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout the roles in the current zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with that role:

add_command_to_role adds a UNIX command to the current role.

add_pamapp_to_role adds a PAM application to the current role.

• • • • • •

ADEdit Command Reference and Scripting Guide 383

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM applications associated with
the current role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the current role.

list_role_rights returns a list of all UNIX commands and PAM applications
associated with the current role.

remove_command_from_role removes a UNIX command from the
current role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the current role.

remove_sd_ace

Use the remove_sd_ace command to remove an access control entry (ACE) in
ACE string form from a security descriptor (SD) in SDDL (security descriptor
description language) form.

The command looks for the supplied ACE string within the supplied SDDL
string. If the command finds the ACE string, it removes it from the SDDL string
and returns the SDDL string.

Zone type

Not applicable

Syntax

remove_sd_ace sddl_string ace_string

• • • • • •

ADEdit command reference 384

Abbreviation

rsa

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
sddl_string string Required. Specifies a security descriptor in SDDL format.

ace_string string Required. Specifies an access control entry in ACE string form,
which is always enclosed in parentheses.

Return value

This command returns a modified security descriptor in SDDL format if it runs
successfully.

Examples

This example removes the first ACE string from an SDDL. The ACE string to
remove is at the end of the command
(A;;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;SY):

remove_sd_ace O:DAG:DAD:AI
(A;;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;SY)
(A;;RCWDWOCCDCLCSWRPWPLOCR;;;DA)(OA;;CCDC;bf967aba-0de6-
11d0-a285-00aa003049e2;;AO)(OA;;CCDC;bf967a9c-0de6-11d0-
a285-00aa003049e2;;AO)(OA;;CCDC;bf967aa8-0de6-11d0-a285-
00aa003049e2;;PO)(A;;RCLCRPLO;;;AU)(OA;;CCDC;4828cc14-1437-
45bc-9b07-ad6f015e5f28;;AO)(OA;CIIOID;RP;4c164200-20c0-
11d0-a768-00aa006e0529;4828cc14-1437-45bc-9b07-

• • • • • •

ADEdit Command Reference and Scripting Guide 385

ad6f015e5f28;RU)(OA;CIIOID;RP;4c164200-20c0-11d0-a768-
00aa006e0529;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a86-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a9c-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967aba-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RCLCRPLO;;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RCLCRPLO;;bf967a9c-0de6-11d0-
a285-00aa003049e2;RU)(OA;CIIOID;RCLCRPLO;;bf967aba-0de6-
11d0-a285-00aa003049e2;RU)(OA;CIID;RPWPCR;91e647de-d96f-
4b70-9557-d63ff4f3ccd8;;PS)
(A;CIID;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;EA)(A;CIID;LC;;;RU)
(A;CIID;SDRCWDWOCCLCSWRPWPLOCR;;;BA)
(A;;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;SY)

The command returns the SDDL string without the first ACE string:

O:DAG:DAD:AI(A;;RCWDWOCCDCLCSWRPWPLOCR;;;DA)
(OA;;CCDC;bf967aba-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;bf967a9c-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;bf967aa8-0de6-11d0-a285-00aa003049e2;;PO)
(A;;RCLCRPLO;;;AU)(OA;;CCDC;4828cc14-1437-45bc-9b07-
ad6f015e5f28;;AO)(OA;CIIOID;RP;4c164200-20c0-11d0-a768-
00aa006e0529;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;4c164200-20c0-11d0-a768-
00aa006e0529;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)

• • • • • •

ADEdit command reference 386

(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a86-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a9c-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967aba-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RCLCRPLO;;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RCLCRPLO;;bf967a9c-0de6-11d0-
a285-00aa003049e2;RU)(OA;CIIOID;RCLCRPLO;;bf967aba-0de6-
11d0-a285-00aa003049e2;RU)(OA;CIID;RPWPCR;91e647de-d96f-
4b70-9557-d63ff4f3ccd8;;PS)
(A;CIID;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;EA)(A;CIID;LC;;;RU)
(A;CIID;SDRCWDWOCCLCSWRPWPLOCR;;;BA)
(A;;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;SY)

Related commands

The following commands enable you to work with security descriptor strings:

add_sd_ace adds an access control entry to a security descriptor.

explain_sd converts an SD in SDDL format to a human-readable form.

set_sd_owner sets the owner of a security descriptor.

rename_object

Use the rename_object command to rename the selected object. You can
replace only the first relative distinguished name in the selected object. You

• • • • • •

ADEdit Command Reference and Scripting Guide 387

do not need to save the object after you change the name.

Zone type

Not applicable

Syntax

rename_object name

Abbreviation

rno

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
name string Required. Specifies the replacement relative distinguished

name for the first relative distinguished name in the selected
object.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit command reference 388

Examples

The following example selects the user object Lois Lane and changes her
name to LoisLane:

select_object “cn=Lois Lane,cn=Users,dc=demo,dc=test”
rename_object LoisLane

The following example selects the organizational unit UnixServers an
renames it to UNIX Servers:

select_object “ou=UnixServers,ou=Centrify,dc=demo,dc=test”
rno “UNIX Servers”

In both examples, quotes are required to preserve spaces in object names.

Related commands

The following command performs actions related to this command:

select_object selects the object you want to rename.

save_dz_command

Use the save_dz_command command to save the currently selected UNIX
command stored in memory to Active Directory. You must save a UNIX
command for any changes you make using ADEdit to take effect in Active
Directory. If you select another UNIX command or end the ADEdit session
before saving the currently selected UNIX command, your changes will be lost.

Zone type

Classic and hierarchical

Syntax

save_dz_command

• • • • • •

ADEdit Command Reference and Scripting Guide 389

Abbreviation

svdzc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

save_dz_command

This example saves the currently selected UNIX command to Active Directory.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
UNIX command:

get_dz_commands returns a Tcl list of UNIX commands in the current
zone.

list_dz_commands lists to stdout the UNIX commands in the current
zone.

• • • • • •

ADEdit command reference 390

new_dz_command creates a new UNIX command and stores it in
memory.

select_dz_command retrieves a UNIX command from Active Directory
and stores it in memory.

After you have a UNIX command stored in memory, you can use the following
commands to work with that command:

delete_dz_command deletes the selected command from Active
Directory and from memory.

get_dzc_field reads a field value from the currently selected command.

set_dzc_field sets a field value in the currently selected command.

save_local_group_profile

Use the save_local_group_profile command to save the currently selected
local UNIX or Linux group object after you create the group object or edit
profile field values in the group object.

Whenever you execute the new_local_group_profile or select_local_
group_profile command, the group continues to be selected until you
execute the save_local_group_profile command.

You can save a group object before the group profile is complete. However,
the group profile is not added to /etc/group on each UNIX and Linux
computer in the zone until the group profile is complete and the profileflag

field is set to 1 (enabled). See new_local_group_profile for details about which
attributes a group profile must have to be considered complete.

Zone type

Hierarchical only.

Syntax

save_local_group_profile

• • • • • •

ADEdit Command Reference and Scripting Guide 391

Abbreviation

svlgp

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

The following example saves the currently selected object for the local UNIX or
Linux group in the currently selected zone.

save_local_group_profile

For example, earlier you might have executed the following command to
select the marketing group object so that you could edit its profile fields:

select_local_group_profile marketing

Executing the following command would save any changes you had made to
the marketing group object:

save_local_group_profile

• • • • • •

ADEdit command reference 392

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

• • • • • •

ADEdit Command Reference and Scripting Guide 393

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

save_local_user_profile

Use the save_local_user_profile command to save the currently selected
local UNIX or Linux user object after you create the user object or edit profile
field values in the user object.

Whenever you execute the new_local_user_profile or select_local_user_
profile command, the user continues to be selected until you execute the
save_local_user_profile command.

You can save a user object before the user profile is complete. However, the
user profile is not added to /etc/passwd on each UNIX and Linux computer in
the zone until the user profile is complete, the profileflag field is set to 1

(enabled) or 2 (disabled), and the user is assigned a visible role such as local
listed. See new_local_user_profile for details about which attributes a user
profile must have to be considered complete.

Zone type

Hierarchical only.

Syntax

save_local_user_profile

Abbreviation

svlup

• • • • • •

ADEdit command reference 394

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

The following example saves the currently selected object for the local UNIX or
Linux user in the currently selected zone.

save_local_user_profile

For example, earlier you might have executed the following command to
select the object for UNIX user anton.splieth so that you could edit its
profile fields:

select_local_user_profile anton.splieth

Executing the following command would save any changes you had made to
the user object for anton.splieth:

save_local_user_profile

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

• • • • • •

ADEdit Command Reference and Scripting Guide 395

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

• • • • • •

ADEdit command reference 396

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

save_nis_map

Use the save_nis_map command to save the currently selected NIS map
stored in memory to Active Directory. You must save the NIS map for any
changes you make using ADEdit to take effect in Active Directory. If you select
another NIS map or end the ADEdit session before saving the currently
selected NIS map, your changes will be lost.

Zone type

Not applicable

Syntax

save_nis_map

Abbreviation

svnm

Options

This command takes no options.

Arguments

This command takes no arguments.

• • • • • •

ADEdit Command Reference and Scripting Guide 397

Return value

This command returns nothing if it runs successfully.

Examples

save_nis_map

This example saves the currently selected NIS map to Active Directory.

Related commands

Before you use this command, you must have a currently selected NIS map
stored in memory. The following commands enable you to view and select a
NIS map:

get_nis_maps returns a Tcl list of NIS maps in the current zone.

list_nis_maps lists to stdout the NIS maps in the current zone.

new_nis_map creates a new NIS map and stores it in memory.

select_nis_map retrieves a NIS map from Active Directory and stores it in
memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map:

add_map_entry or add_map_entry_with_comment adds a map entry to
the currently selected NIS map.

delete_map_entry removes an entry from the currently selected NIS
map.

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

get_nis_map or get_nis_map_with_comment returns a Tcl list of the map
entries in the currently selected NIS map.

get_nis_map_field reads a field value from the currently selected NIS
map.

• • • • • •

ADEdit command reference 398

list_nis_map or list_nis_map_with_comment lists to stdout the map
entries in the currently selected NIS map.

save_object

Use the save_object command to save the currently selected Active
Directory object stored in memory to Active Directory. You must save the
Active Directory object for any changes you make using ADEdit to take effect
in Active Directory. If you select another Active Directory object or end the
ADEdit session before saving the currently selected object, your changes will
be lost.

If an object has invalid attributes or values or is the wrong class for the
container where it’s being saved, Active Directory will report an error and the
object will not be saved.

Zone type

Not applicable

Syntax

save_object

Abbreviation

svo

Options

This command takes no options.

• • • • • •

ADEdit Command Reference and Scripting Guide 399

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

save_object

This example saves the currently selected Active Directory object to Active
Directory.

Related commands

The following commands enable you to view and select the object to work
with:

get_objects performs an LDAP search of Active Directory and returns a
Tcl list of the distinguished names of objects matching the specified
search criteria.

new_object creates a new Active Directory object and stores it in
memory.

select_object retrieves an object and its attributes from Active Directory
and stores it in memory.

After you have an Active Directory object stored in memory, you can use the
following commands to work with that object’s attributes, delete the object, or
save information for the object:

add_object_value adds a value to a multi-valued field attribute of the
currently selected Active Directory object.

delete_object deletes the selected Active Directory object from Active
Directory and from memory.

• • • • • •

ADEdit command reference 400

delete_sub_tree deletes an Active Directory object and all of its children
from Active Directory.

get_object_field reads a field value from the currently selected Active
Directory object.

remove_object_value removes a value from a multi-valued field attribute
of the currently selected Active Directory object.

set_object_field sets a field value in the currently selected Active
Directory object.

save_pam_app

Use the save_pam_app command to save the currently selected PAM
application access right stored in memory to Active Directory. You must save
the PAM application right for any changes you make using ADEdit to take
effect in Active Directory. If you select another PAM application right or end
the ADEdit session before saving the currently selected PAM application right,
your changes will be lost.

Zone type

Classic and hierarchical

Syntax

save_pam_app

Abbreviation

svpam

Options

This command takes no options.

• • • • • •

ADEdit Command Reference and Scripting Guide 401

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

save_pam_app

This example saves the currently selected PAM application to Active Directory.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
PAM application object:

get_pam_apps returns a Tcl list of PAM applications in the current zone.

list_pam_apps lists to stdout the PAM application rights in the current
zone.

new_pam_app creates a new PAM application right and stores it in
memory.

select_pam_app retrieves a PAM application right from Active Directory
and stores it in memory.

After you have a PAM application right stored in memory, you can use the
following commands to work with that PAM application:

delete_pam_app deletes the selected PAM application from Active
Directory and from memory.

get_pam_field reads a field value from the currently selected PAM
application.

set_pam_field sets a field value in the currently selected PAM application.

• • • • • •

ADEdit command reference 402

save_role

Use the save_role command to save the currently selected role stored in
memory to Active Directory. You must save the role for any changes you make
using ADEdit to take effect in Active Directory. If you select another role or end
the ADEdit session before saving the currently selected role, your changes will
be lost.

Zone type

Classic and hierarchical

Syntax

save_role

Abbreviation

svr

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit Command Reference and Scripting Guide 403

Examples

save_role

This example saves the currently selected role to Active Directory.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
roles:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout the roles in the current zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with that role:

add_command_to_role adds a UNIX command to the current role.

add_pamapp_to_role adds a PAM application right to the current role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM application rights associated
with the current role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the current role.

get_role_field reads a field value from the current role.

list_role_rights returns a list of all UNIX commands and PAM application
rights associated with the current role.

remove_command_from_role removes a UNIX command from the
current role.

• • • • • •

ADEdit command reference 404

remove_pamapp_from_role removes a PAM application right from the
current role.

set_role_field sets a field value in the current role.

save_role_assignment

Use the save_role_assignment command to save the currently selected role
assignment stored in memory to Active Directory. You must save the role
assignment for any changes you make using ADEdit to take effect in Active
Directory. If you select another role assignment or end the ADEdit session
before saving the currently selected role assignment, your changes will be
lost.

Zone type

Classic and hierarchical

Syntax

save_role_assignment

Abbreviation

svra

Options

This command takes no options.

Arguments

This command takes no arguments.

• • • • • •

ADEdit Command Reference and Scripting Guide 405

Return value

This command returns nothing if it runs successfully.

Examples

save_role_assignment

This example saves the currently selected role assignment to Active Directory.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
role assignment to work with:

get_role_assignments returns a Tcl list of role assignments in the current
zone.

list_role_assignments lists to stdout the role assignments in the current
zone.

new_role_assignment creates a new role assignment and stores it in
memory.

select_role_assignment retrieves a role assignment from Active Directory
and stores it in memory.

After you have a role assignment stored in memory, you can use the following
commands to work with that role assignment’s attributes, delete the role
assignment, or save information for the role assignment:

delete_role_assignment deletes the selected role assignment from Active
Directory and from memory.

get_role_assignment_field reads a field value from the current role
assignment.

save_role_assignment saves the selected role assignment with its
current settings to Active Directory.

set_role_assignment_field sets a field value in the current role
assignment.

• • • • • •

ADEdit command reference 406

save_rs_command

Use the save_rs_command command to save the currently selected restricted
shell command that is stored in memory to Active Directory. You must save
the restricted shell command for any changes you make using ADEdit to take
effect in Active Directory. If you select another restricted shell command or
end the ADEdit session before saving the currently selected restricted shell
command, your changes will be lost.

Zone type

Classic only

Syntax

save_rs_command

Abbreviation

svrsc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit Command Reference and Scripting Guide 407

Examples

save_rs_command

This example saves the currently selected RSC to Active Directory.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
restricted shell command to work with:

get_rs_commands returns a Tcl list of restricted shell commands in the
current zone.

list_rs_commands lists to stdout the restricted shell commands in the
current zone.

new_rs_command creates a new restricted shell command and stores it
in memory.

select_rs_command retrieves a restricted shell command from Active
Directory and stores it in memory.

After you have a restricted shell command stored in memory, you can use the
following commands to work with that restricted shell:

delete_rs_command deletes the selected command from Active
Directory and from memory.

get_rsc_field reads a field value from the currently selected command.

set_rsc_field sets a field value in the currently selected command.

save_rs_env

Use the save_rs_env command to save the currently selected restricted shell
environment that is stored in memory to Active Directory. You must save the
selected restricted shell environment for any changes you make using ADEdit
to take effect in Active Directory. If you select another restricted shell
environment or end the ADEdit session before saving the currently selected
restricted shell environment, your changes will be lost.

• • • • • •

ADEdit command reference 408

Zone type

Classic only

Syntax

save_rs_env

Abbreviation

svrse

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

save_rs_env

This command saves the currently selected restricted shell environment to
Active Directory.

• • • • • •

ADEdit Command Reference and Scripting Guide 409

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with restricted shell environments:

get_rs_envs returns a Tcl list of restricted shell environments.

list_rs_envs lists to stdout the restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

After you have a restricted shell environment stored in memory, you can use
the following commands to work with its fields:

delete_rs_env deletes the current restricted shell environment from
Active Directory and from memory.

get_rse_field reads a field value from the current restricted shell
environment.

set_rse_field sets a field value in the current restricted shell
environment.

save_zone

Use the save_zone command to save the currently selected zone stored in
memory to Active Directory. You must save the selected zone for any changes
you make using ADEdit to take effect in Active Directory. If you select another
zone or end the ADEdit session before saving the currently selected zone,
your changes will be lost.

This command only saves fields that are properties in the currently selected
zone. The command does not save any users or groups added to a zone. You
must save users and groups individually using the save_zone_user and save_
zone_group commands.

• • • • • •

ADEdit command reference 410

Zone type

Classic and hierarchical

Syntax

save_zone

Abbreviation

svz

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

save_zone

This example saves the currently selected zone or computer role to Active
Directory.

• • • • • •

ADEdit Command Reference and Scripting Guide 411

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
zone to work with:

create_zone creates a new zone in Active Directory.

get_zones returns a Tcl list of all zones within a specified domain.

select_zone retrieves a zone from Active Directory and stores it in
memory.

After you have a zone stored in memory, you can use the following commands
to work with that zone:

delegate_zone_right delegates a zone use right to a specified user or
computer.

delete_zone deletes the selected zone from Active Directory and
memory.

get_child_zones returns a Tcl list of child zones, computer roles, or
computer zones.

get_zone_field reads a field value from the currently selected zone.

get_zone_nss_vars returns the NSS substitution variable for the selected
zone.

set_zone_field sets a field value in the currently selected zone.

save_zone_computer

Use the save_zone_computer command to save the currently selected zone
computer stored in memory to Active Directory. You must set at least one
field value before you can save a zone computer. In classic zones, you must
set all field values before you can save a zone computer.

You must save the selected zone computer for any changes you make using
ADEdit to take effect in Active Directory. If you select another zone computer
or end the ADEdit session before saving the currently selected zone
computer, your changes will be lost.

• • • • • •

ADEdit command reference 412

Zone type

Classic and hierarchical

Syntax

save_zone_computer

Abbreviation

svzc

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

save_zone_computer

This example saves the currently selected zone computer to Active Directory.

• • • • • •

ADEdit Command Reference and Scripting Guide 413

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and manage
the zone computers:

get_zone_computers returns a Tcl list of the Active Directory names of all
zone computers in the current zone.

list_zone_computers lists to stdout the zone computers in the current
zone.

new_zone_computer creates a new zone computer and stores it in
memory.

select_zone_computer retrieves a zone computer from Active Directory
and stores it in memory.

After you have a zone computer stored in memory, you can use the following
commands to work with that zone computer:

delete_zone_computer deletes the zone computer from Active Directory
and from memory.

get_zone_computer_field reads a field value from the currently selected
zone computer.

save_zone_computer saves the zone computer with its current settings
to Active Directory.

set_zone_computer_field sets a field value in the currently selected zone
computer.

save_zone_group

Use the save_zone_group command to save the currently selected zone
group stored in memory to Active Directory. You must set at least one field
value before you can save a zone group. In classic zones, you must set all field
values before you can save a zone group.

You must save the selected zone group for any changes you make using
ADEdit to take effect in Active Directory. If you select another zone group or
end the ADEdit session before saving the currently selected zone group, your
changes will be lost.

• • • • • •

ADEdit command reference 414

Zone type

Classic and hierarchical

Syntax

save_zone_group

Abbreviation

svzg

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

save_zone_group

This example saves the currently selected zone group to Active Directory.

• • • • • •

ADEdit Command Reference and Scripting Guide 415

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
zone groups:

get_zone_groups returns a Tcl list of the Active Directory names of all
zone groups in the current zone.

list_zone_groups lists to stdout the zone groups in the current zone.

new_zone_group creates a new zone group and stores it in memory.

select_zone_group retrieves a zone group from Active Directory and
stores it in memory.

After you have a zone group stored in memory, you can use the following
commands to work with that zone group:

delete_zone_group deletes the selected zone group from Active
Directory and from memory.

get_zone_group_field reads a field value from the currently selected zone
group.

save_zone_group saves the selected zone group with its current settings
to Active Directory.

set_zone_group_field sets a field value in the currently selected zone
group.

save_zone_user

Use the save_zone_user command to save the currently selected zone user
stored in memory to Active Directory. You must set at least one field value
before you can save a zone user. In classic zones, you must set all field values
before you can save a zone user.

You must save the selected zone user for any changes you make using ADEdit
to take effect in Active Directory. If you select another zone user or end the
ADEdit session before saving the currently selected zone user, your changes
will be lost.

• • • • • •

ADEdit command reference 416

Zone type

Classic and hierarchical

Syntax

save_zone_user

Abbreviation

svzu

Options

This command takes no options.

Arguments

This command takes no arguments.

Return value

This command returns nothing if it runs successfully.

Examples

save_zone_user

This example saves the currently selected zone user to Active Directory.

• • • • • •

ADEdit Command Reference and Scripting Guide 417

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
zone user:

get_zone_users returns a Tcl list of the Active Directory names of all zone
users in the current zone.

list_zone_users lists to stdout the zone users and their NSS data in the
current zone.

new_zone_user creates a new zone user and stores it in memory.

select_zone_user retrieves a zone user from Active Directory and stores
it in memory.

After you have a zone user stored in memory, you can use the following
commands to work with that zone user:

delete_zone_user deletes the selected zone user from Active Directory
and from memory.

get_zone_user_field reads a field value from the currently selected zone
user.

save_zone_user saves the selected zone user with its current settings to
Active Directory.

set_zone_user_field sets a field value in the currently selected zone user.

select_dz_command

Use the select_dz_command command to retrieve a UNIX command in the
currently selected zone from Active Directory. This command stores the
selected UNIX command in memory, and makes it the currently selected UNIX
command for subsequent ADEdit commands. The UNIX command remains
selected until you select another UNIX command or zone, delete the UNIX
command, or end the ADEdit session.

If you use ADEdit commands such as set_dzc_field to change settings for
the selected UNIX command, you must save the selected UNIX command
using the save_dz_command command for your changes to take effect in Active

• • • • • •

ADEdit command reference 418

Directory. If you select another UNIX command or end the ADEdit session
before saving the currently selected UNIX command, your changes will be lost.

You can only use the select_dz_command command to select UNIX
commands if the currently selected zone is a classic4 or hierarchical zone. The
command does not work for other types of zones.

Zone type

Classic and hierarchical

Syntax

select_dz_command command

Abbreviation

sldzc

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
command string Required. Specifies the name of the UNIX command to select.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit Command Reference and Scripting Guide 419

Examples

select_dz_command account_manager

This example looks for the UNIX command named “account_manager” in the
current zone and, if found, selects it as the current UNIX command.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
UNIX command to work with:

get_dz_commands returns a Tcl list of UNIX commands in the current
zone.

list_dz_commands lists to stdout the UNIX commands in the current
zone.

new_dz_command creates a new UNIX command and stores it in
memory.

After you have a UNIX command stored in memory, you can use the following
commands to work with that command:

delete_dz_command deletes the selected command from Active
Directory and from memory.

get_dzc_field reads a field value from the currently selected command.

save_dz_command saves the selected command with its current settings
to Active Directory.

set_dzc_field sets a field value in the currently selected command.

select_local_group_profile

Use the select_local_group_profile command to select a local UNIX or
Linux group object for viewing or editing. The group that you specify remains
selected until you execute the save_local_group_profile command.

• • • • • •

ADEdit command reference 420

You typically use select_local_group_profile to select a group profile
before you execute get_local_group_profile_field or set_local_group_
profile_field to view or edit profile information.

Zone type

Hierarchical only.

Syntax

select_local_group_profile group_name

Abbreviation

sllgp

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
group_name string Required. Specifies the UNIX name of the local group to select.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit Command Reference and Scripting Guide 421

Examples

The following example selects the object for the local UNIX or Linux group
marketing.

select_local_group_profile marketing

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

• • • • • •

ADEdit command reference 422

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

select_local_user_profile

Use the select_local_user_profile command to select a local UNIX or
Linux user object for viewing or editing. The user that you specify remains
selected until you execute the save_local_user_profile command.

You typically use select_local_user_profile to select a user profile before
you execute get_local_user_profile_field or set_local_user_profile_
field to view or edit profile information.

Zone type

Hierarchical only.

Syntax

select_local_user_profile user_name

• • • • • •

ADEdit Command Reference and Scripting Guide 423

Abbreviation

sllup

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
user_name string Required. Specifies the UNIX name of the local user to select.

Return value

This command returns nothing if it runs successfully.

Examples

The following example selects the object for the local UNIX or Linux user
anton.splieth.

select_local_user_profile anton.splieth

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

• • • • • •

ADEdit command reference 424

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 425

select_nis_map

Use the select_nis_map command to retrieve a NIS map in the currently
selected zone from Active Directory. This command stores the NIS map in
memory, and makes it the currently selected NIS map for subsequent ADEdit
commands. The NIS map remains selected until you select another NIS map
or zone, delete the NIS map, or end the ADEdit session.

If you use ADEdit commands such as add_map_entry to change settings for
the selected NIS map, you must save the selected NIS map using the save_

nis_map command for your changes to take effect in Active Directory. If you
select another NIS map or end the ADEdit session before saving the currently
selected NIS map, your changes will be lost.

Zone type

Not applicable

Syntax

select_nis_map map

Abbreviation

slnm

Options

This command takes no options.

Arguments

This command takes the following arguments:

• • • • • •

ADEdit command reference 426

Argument Type Description
map string Required. Specifies the name of the NIS map to retrieve from

Active Directory.

Return value

This command returns nothing if it runs successfully.

Examples

select_nis_map Printers

This example looks for the NIS map named “Printers” in the current zone and,
if found, selects it as the current NIS map.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select NIS
maps:

get_nis_maps returns a Tcl list of NIS maps in the current zone.

list_nis_maps returns a list to stdout of all NIS maps in the current zone.

new_nis_map creates a new NIS map and stores it in memory.

After you have a NIS map stored in memory, you can use the following
commands to work with that map:

add_map_entry or add_map_entry_with_comment adds an entry to the
current NIS map stored in memory.

delete_map_entry removes an entry from the current NIS map.

delete_nis_map deletes the selected NIS map from Active Directory and
from memory.

get_nis_map or get_nis_map_with_comment returns a Tcl list of the map
entries in the current NIS map.

• • • • • •

ADEdit Command Reference and Scripting Guide 427

get_nis_map_field reads a field value from the current NIS map.

list_nis_map or list_nis_map_with_comment lists to stdout the map
entries in the current NIS map.

save_nis_map saves the selected NIS map with its current entries to
Active Directory.

select_object

Use the select_object command to retrieve the specified Active Directory
object and its attributes from Active Directory. This command stores the
object in memory and makes it the currently selected Active Directory object.
You can use options to retrieve the rootDSE of the object or to list specific
attributes to retrieve for the object.

Zone type

Not applicable

Syntax

select_object [-rootdse] [-attrs a1[,a2,...]] dn

Abbreviation

slo

Options

This command takes the following options:

Option Description
-
rootdse

Returns the rootDSE of the specified object instead of the object.

• • • • • •

ADEdit command reference 428

Option Description
-attrs
a1
[,a2,...]

Specifies the attributes to retrieve and store in memory.

If you use this option, only the attributes you name (a1, a2, a3, and so
on) are retrieved. This option is useful if you want to limit the number of
attributes returned or want to return attributes not normally returned by
Active Directory.

If you do not use this option, ADEdit retrieves the attributes normally
returned by Active Directory for the selected object type.

Arguments

This command takes the following argument:

Argument Type Description
dn DN Required. Specifies the distinguished name (DN) of an Active

Directory object.

Return value

This command returns nothing if it runs successfully.

Examples

select_object “cn=users,dc=acme,dc=com”

This example returns the container object cn=users,dc=acme,dc=com and its
attributes, and stores it in memory as the currently selected Active Directory
object.

Related commands

The following commands enable you to view and select the object to work
with:

• • • • • •

ADEdit Command Reference and Scripting Guide 429

get_objects performs an LDAP search of Active Directory and returns a
Tcl list of the distinguished names of objects matching the specified
search criteria.

new_object creates a new Active Directory object and stores it in
memory.

After you have an Active Directory object stored in memory, you can use the
following commands to work with that object’s attributes, delete the object, or
save information for the object:

add_object_value adds a value to a multi-valued field attribute of the
currently selected Active Directory object.

delete_object deletes the selected Active Directory object from Active
Directory and from memory.

delete_sub_tree deletes an Active Directory object and all of its children
from Active Directory.

get_object_field reads a field value from the currently selected Active
Directory object.

remove_object_value removes a value from a multi-valued field attribute
of the currently selected Active Directory object.

save_object saves the selected Active Directory object with its current
settings to Active Directory.

set_object_field sets a field value in the currently selected Active
Directory object.

select_pam_app

Use the select_pam_app command to retrieve a PAM application access right
in the currently selected zone from Active Directory. This command stores the
PAM application right in memory, and makes it the currently selected PAM
application right for subsequent ADEdit commands. The PAM application right
remains selected until you select another PAM application right or zone,
delete the PAM application right, or end the ADEdit session.

If you use ADEdit commands such as set_pam_field to change settings for
the selected PAM application right, you must save the selected PAM
application right using the save_pam_app command for your changes to take

• • • • • •

ADEdit command reference 430

effect in Active Directory. If you select another PAM application right or end
the ADEdit session before saving the currently selected PAM application right,
your changes will be lost.

You can only use the select_pam_app command to select PAM applications if
the currently selected zone is a classic4 or hierarchical zone. The command
does not work for other types of zones.

Zone type

Classic and hierarchical

Syntax

select_pam_app name[/zonename]

Abbreviation

slpam

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
name
[/zonename]

string Required. Specifies the name of the PAM application right to
select.

If the PAM application right that you want to select is defined in
the current zone, the zonename argument is optional.

• • • • • •

ADEdit Command Reference and Scripting Guide 431

Argument Type Description
If the PAM application right is defined in a zone other than the
currently selected zone, the zonename argument is required to
identify the specific PAM application right to select.

Return value

This command returns nothing if it runs successfully.

Examples

The following example retrieves the PAM application right named sftp in the
current zone and makes it the currently selected PAM application right:

select_pam_app sftp

The following example retrieves the PAM application right named sftp

defined in the chicago zone and makes it the currently selected PAM
application right:

select_pam_app sftp/chicago

The definition for the PAM application right named sftp might be the same in
both zones, but it is not required to be. Specifying the zone ensures you get
the definition you expect.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. After you have a zone stored in memory, you can use the
following commands to view and select the PAM application to work with:

get_pam_apps returns a Tcl list of PAM application rights in the current
zone.

list_pam_apps lists to stdout the PAM application rights in the current
zone.

• • • • • •

ADEdit command reference 432

new_pam_app creates a new PAM application right and stores it in
memory.

select_pam_app retrieves a PAM application right from Active Directory
and stores it in memory

After you have a PAM application stored in memory, you can use the following
commands to work with that PAM application’s attributes, delete the PAM
application, or save information for the PAM application:

delete_pam_app deletes the selected PAM application right from Active
Directory and from memory.

get_pam_field reads a field value from the currently selected PAM
application right.

save_pam_app saves the selected PAM application right with its current
settings to Active Directory.

set_pam_field sets a field value in the currently selected PAM application
right.

select_role

Use the select_role command to retrieve a role in the currently selected
zone from Active Directory. This command stores the role in memory, and
makes it the currently selected role for subsequent ADEdit commands. The
role remains selected until you select another role or zone, delete the role, or
end the ADEdit session.

If you use ADEdit commands such as set_role_field to change settings for
the selected role, you must save the selected role using the save_role

command for your changes to take effect in Active Directory. If you select
another role or end the ADEdit session before saving the currently selected
role, your changes will be lost.

You can only use the select_role command to select roles if the currently
selected zone is a classic4 or hierarchical zone. The command does not work
for other types of zones.

• • • • • •

ADEdit Command Reference and Scripting Guide 433

Zone type

Classic and hierarchical

Syntax

select_role role

Abbreviation

slr

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
role string Required. Specifies the name of the role to select.

Return value

This command returns nothing if it runs successfully.

Examples

select_role servicerep

This example retrieves the role definition named servicerep in the current
zone and makes it as the currently selected role.

• • • • • •

ADEdit command reference 434

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
role:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout the roles in the current zone.

new_role creates a new role and stores it in memory.

After you have a role stored in memory, you can use the following commands
to work with that role:

add_command_to_role adds a UNIX command right to the current role.

add_pamapp_to_role adds a PAM application right to the current role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM application rights associated
with the current role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the current role.

get_role_field reads a field value from the current role.

list_role_rights returns a list of all UNIX command and PAM application
rights associated with the current role.

remove_command_from_role removes a UNIX command right from the
current role.

remove_pamapp_from_role removes a PAM application right from the
current role.

save_role saves the selected role with its current settings to Active
Directory.

set_role_field sets a field value in the current role.

• • • • • •

ADEdit Command Reference and Scripting Guide 435

select_role_assignment

Use the select_role_assignment command to retrieve a role assignment in
the currently selected zone from Active Directory. This command stores the
role assignment in memory, and makes it the currently selected role
assignment for subsequent ADEdit commands. The role assignment remains
selected until you select another role assignment or zone, delete the role
assignment, or end the ADEdit session.

If you use ADEdit commands such as set_role_assignment_field to change
settings for the selected role assignment, you must save the selected role
assignment using the save_role_assignment command for your changes to
take effect in Active Directory. If you select another role assignment or end the
ADEdit session before saving the currently selected role assignment, your
changes will be lost.

You can only use the select_role_assignment command to select role
assignments if the currently selected zone is a classic4 or hierarchical zone.
The command does not work for other types of zones.

Zone type

Classic and hierarchical

Syntax

select_role_assignment principal/role[/zone]

Abbreviation

slra

Options

This command takes no options.

• • • • • •

ADEdit command reference 436

Arguments

This command takes the following argument:

Argument Type Description
principal/role
[/zone]

string Required. Specifies the user principal name (UPN) of the user
or group to whom the role is assigned, followed by a slash (/)
and the name of the role to assign to the principal.

The zone argument is optional if the role is defined in the
currently selected zone. If the role is defined in a zone other
than the currently selected zone, the /zone argument is
required.

Return value

This command returns nothing if it runs successfully.

Examples

select_role_assignment poweradmins@acme.com/root/global

This example retrieves the role assignment that assigns the role named root,
as defined in the global zone, to the principal named poweradmins@acme.com.
The principal is a group.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
role assignment:

get_role_assignments returns a Tcl list of role assignments in the current
zone.

list_role_assignments lists to stdout the role assignments in the current
zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 437

new_role_assignment creates a new role assignment and stores it in
memory.

select_role_assignment retrieves a role assignment from Active Directory
and stores it in memory.

After you have a role assignment stored in memory, you can use the following
commands to work with that role assignment:

delete_role_assignment deletes the selected role assignment from Active
Directory and from memory.

get_role_assignment_field reads a field value from the currently selected
role assignment.

save_role_assignment saves the selected role assignment with its
current settings to Active Directory.

set_role_assignment_field sets a field value in the currently selected role
assignment.

select_rs_command

Use the select_rs_command command to retrieve a restricted shell command
in the currently selected zone from Active Directory, store it in memory, and
set it as the currently selected restricted shell command for other ADEdit
commands. After you select the restricted shell command to work with, it
remains selected until you select a different restricted shell command, change
the currently selected zone, delete the restricted shell command, or end the
ADEdit session.

If you use ADEdit commands such as set_rsc_field to change settings for the
selected restricted shell command, you must save the restricted shell
command using the save_rs_command command for your changes to take
effect in Active Directory. If you select another restricted shell command or
end the ADEdit session before saving the currently selected restricted shell
command, your changes will be lost.

You can only use the select_rs_command if the currently selected zone is a
classic zone.The command does not work in other types of zones.

• • • • • •

ADEdit command reference 438

Zone type

Classic only

Syntax

select_rs_command rs_cmd

Abbreviation

slrsc

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
rs_cmd string Required. Specifies the name of the restricted shell command

to select.

Return value

This command returns nothing if it runs successfully.

Examples

select_rs_command rsc1

• • • • • •

ADEdit Command Reference and Scripting Guide 439

This command looks for the restricted shell command name rsc1 in the
current zone. If rsc1 is found in the current zone, it becomes the currently
selected context for subsequent commands.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
restricted shell command to work with:

get_rs_commands returns a Tcl list of restricted shell commands in the
current zone.

list_rs_commands lists to stdout the restricted shell commands in the
current zone.

new_rs_command creates a new restricted shell command and stores it
in memory.

After you have a restricted shell command stored in memory, you can use the
following commands to work with that restricted shell command:

delete_rs_command deletes the selected command from Active
Directory and from memory.

get_rsc_field reads a field value from the currently selected command.

save_rs_command saves the selected command with its current settings
to Active Directory.

set_rsc_field sets a field value in the currently selected command.

select_rs_env

Use the select_rs_env command to retrieve a restricted shell environment
in the currently selected zone from Active Directory, stores it in memory, and
sets it to be the currently selected restricted shell environment for other
ADEdit commands. The restricted shell environment remains selected until
you select another restricted shell environment, change the currently
selected zone, delete the restricted shell environment, or end the ADEdit
session.

• • • • • •

ADEdit command reference 440

If you use ADEdit commands such as set_rse_field to change settings for the
restricted shell environment, you must save the restricted shell environment
using the save_rs_env command for your changes to take effect in Active
Directory. If you select another restricted shell environment or end the ADEdit
session before saving the currently selected restricted shell environment,
your changes will be lost.

You can only use the select_rs_env command if the currently selected zone
is a classic4 zone. The command does not work in other types of zones.

Zone type

Classic only

Syntax

select_rs_env rse_name

Abbreviation

slrse

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
rse_name string Required. Specifies the name of the restricted shell

environment to select.

• • • • • •

ADEdit Command Reference and Scripting Guide 441

Return value

This command returns nothing if it runs successfully.

Examples

select_rs_env rse1

This command looks for the restricted shell environment named rse1 in the
current zone. If rse1 is found in the current zone, it becomes the currently
selected context for subsequent commands.

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with restricted shell environments:

get_rs_envs returns a Tcl list of restricted shell environments.

list_rs_envs lists to stdout the restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

After you have a restricted shell environment stored in memory, you can use
the following commands to work with its fields:

delete_rs_env deletes the current restricted shell environment from
Active Directory and from memory.

get_rse_field reads a field value from the current restricted shell
environment.

save_rs_env saves the restricted shell environment to Active Directory.

set_rse_field sets a field value in the current restricted shell
environment.

• • • • • •

ADEdit command reference 442

select_zone

Use the select_zone command to retrieve a zone from Active Directory,
stores the zone in memory, and make that zone as the currently selected zone
for subsequent ADEdit commands. The zone remains selected until you select
another zone, delete the zone, or end the ADEdit session.

If you use ADEdit commands such as set_zone_field to change settings for
the zone, you must save the zone using the save_zone command for your
changes to take effect in Active Directory. If you select another zone or end
the ADEdit session before saving the currently selected zone, your changes
will be lost.

You should note that ADEdit treats computer roles and computer-specific
overrides as special use-case zones. You can, therefore, use the select_zone

command to retrieve a “computer role zone” or a “computer-specific zone” to
work with as the currently selected zone. If you specify a zone that is a
computer role zone or a computer-specific zone, subsequent ADEdit
commands will treat the zone as a computer role or a computer-specific zone
instead of a standard zone. You can only work with one zone at a time,
regardless of type. Because some ADEdit commands behave differently in
different types of zones, you should verify the type of zone you are working
with when you select a zone.

Zone type

Classic and hierarchical

Syntax

select_zone [-nc] path

Abbreviation

slz

• • • • • •

ADEdit Command Reference and Scripting Guide 443

Options

This command takes the following option:

Option Description
-nc Requests a reread of the zone’s fields from Active Directory.

Use this option after you use the save_zone command to ensure you
have the current Active Directory field values in memory. For example,
after a save_zone command, the modifyTime field value is updated. If
you do not then run select_zone -nc, a gzf modifyTime command
returns the previous value.

Arguments

This command takes the following argument:

Argument Type Description
path string Required. Specifies the path to the selected zone or computer

role. The path format depends on the type of zone selected:

A tree, classic3, classic4, or SFU zone path consists
of the zone’s distinguished name. Enclose the path
in braces or quotes to allow spaces in the
distinguished name.

A computer role path consists of the host zone’s
distinguished name followed by a slash (/) and the
name of the computer zone. Enclose the path in
braces or quotes to allow spaces in the
distinguished name.

A computer override path consists of the computer
name followed by an ampersand (@) and the
distinguished name of the host zone.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit command reference 444

Examples

The following example selects a standard zone named cz1 in the Zones

container in the UNIX organizational unit in the acme.com domain:

select_zone "CN=cz1,CN=Zones,OU=UNIX,DC=acme,DC=com”

The following example selects the computer role named LinuxComputers in
the global zone in the Zones container in the UNIX organizational unit in the
acme.com domain:

select_zone
“CN=global,CN=Zones,OU=UNIX,DC=acme,DC=com/LinuxComputers”

The following example selects the computer-specific override zone named
server1 in the global zone in the acme.com domain:

select_zone
server1@”CN=global,CN=Zones,OU=Centrify,DC=acme,DC=com”

Related commands

The following commands perform actions related to this command:

create_zone creates a new zone in Active Directory.

get_zones returns a Tcl list of all zones within a specified domain.

After you have a zone stored in memory, you can use the following commands
to work with that zone:

delegate_zone_right delegates a zone use right to a specified user or
computer.

delete_zone deletes the selected zone from Active Directory and
memory.

get_child_zones returns a Tcl list of child zones, computer roles, or
computer zones.

get_zone_field reads a field value from the currently selected zone.

get_zone_nss_vars returns the NSS substitution variable for the selected
zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 445

save_zone saves the selected zone with its current settings to Active
Directory.

set_zone_field sets a field value in the currently selected zone.

select_zone_computer

Use the select_zone_computer command to retrieve a zone computer in the
currently selected zone from Active Directory, store it in memory, and make it
the currently selected zone computer for subsequent ADEdit commands. The
zone computer remains selected until you select another zone computer,
delete the zone computer, or end the ADEdit session.

If you use ADEdit commands such as set_zone_computer_field to change
settings for the zone computer, you must save the zone computer using the
save_zone_computer command for your changes to take effect in Active
Directory. If you select another zone computer or end the ADEdit session
before saving the currently selected zone computer, your changes will be lost.

Zone type

Classic and hierarchical

Syntax

select_zone_computer sAMAccountName$@domain

Abbreviation

slzc

Options

This command takes no options.

• • • • • •

ADEdit command reference 446

Arguments

This command takes the following argument:

Argument Type Description
sAMAccountName string Required. Specifies the Active Directory computer’s

sAMAccountName followed by $@ and the computer’s
domain.

You can look up the sAMAccountName for a computer in
Active Directory Users and Computers or by running the
get_zone_computers command.

Return value

This command returns nothing if it runs successfully.

Examples

select_zone_computer sales2$@acme.com

This example looks for the zone computer named sales2 in the current zone
and, if found, selects it as the current zone computer.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and manage
the zone computers:

get_zone_computers returns a Tcl list of the Active Directory names of all
zone computers in the current zone.

list_zone_computers lists to stdout the zone computers in the current
zone.

new_zone_computer creates a new zone computer and stores it in
memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 447

After you have a zone computer stored in memory, you can use the following
commands to work with that zone computer:

delete_zone_computer deletes the zone computer from Active Directory
and from memory.

get_zone_computer_field reads a field value from the currently selected
zone computer.

save_zone_computer saves the zone computer with its current settings
to Active Directory.

set_zone_computer_field sets a field value in the currently selected zone
computer.

select_zone_group

Use the select_zone_group command to retrieve a zone group in the
currently selected zone from Active Directory. The command stores the zone
group in memory and makes it the currently selected zone group for
subsequent ADEdit commands. The zone group remains selected until you
select another zone group, delete the zone group, or end the ADEdit session.

If you use ADEdit commands such as set_zone_group_field to change
settings for the zone group, you must save the zone group using the save_

zone_group command for your changes to take effect in Active Directory. If
you select another zone group or end the ADEdit session before saving the
currently selected zone group, your changes will be lost.

Zone type

Classic and hierarchical

Syntax

select_zone_group AD_group_UPN

• • • • • •

ADEdit command reference 448

Abbreviation

slzg

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
AD_group_
UPN

string Required. Specifies the user principal name (UPN) of a zone
group in the currently selected zone.

Return value

This command returns nothing if it runs successfully.

Examples

select_zone_group poweradmins@acme.com

This example looks for the group named poweradmins in the current zone
and, if found, selects it as the current zone group.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
zone groups:

• • • • • •

ADEdit Command Reference and Scripting Guide 449

get_zone_groups returns a Tcl list of the Active Directory names of all
zone groups in the current zone.

list_zone_groups lists to stdout the zone groups in the current zone.

new_zone_group creates a new zone group and stores it in memory.

After you have a zone group stored in memory, you can use the following
commands to work with that zone group:

delete_zone_group deletes the selected zone group from Active
Directory and from memory.

get_zone_group_field reads a field value from the currently selected zone
group.

save_zone_group saves the selected zone group with its current settings
to Active Directory.

set_zone_group_field sets a field value in the currently selected zone
group.

select_zone_user

Use the select_zone_user command to retrieve a zone user in the currently
selected zone from Active Directory. This command stores the zone user in
memory, and makes it the currently selected zone user for subsequent ADEdit
commands. The zone user remains selected until you select another zone
user, delete the zone user, or end the ADEdit session.

If you use ADEdit commands such as set_zone_user_field to change
settings for the zone user, you must save the zone user using the save_zone_

user command for your changes to take effect in Active Directory. If you select
another zone user or end the ADEdit session before saving the currently
selected zone user, your changes will be lost.

Zone type

Classic and hierarchical

• • • • • •

ADEdit command reference 450

Syntax

select_zone_user user

Abbreviation

slzu

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
user string Required. Specifies the sAMAccountName@domain or user

principal name (UPN) of a zone user in the currently selected
zone.

ADEdit resolves the user with the sAMAcccountName first, then
the UPN. If the zone user is an orphan user—that is, the
corresponding Active Directory user no longer exists—you
must specify the user’s security identifier (SID) instead.

Return value

This command returns nothing if it runs successfully.

Examples

select_zone_user adam.avery@acme.com

• • • • • •

ADEdit Command Reference and Scripting Guide 451

This example looks for the Active Directory user adam.avery in the current
zone and, if found, selects that user as the current zone user.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
zone user:

get_zone_users returns a Tcl list of the Active Directory names of all zone
users in the current zone.

list_zone_users lists to stdout the zone users and their NSS data in the
current zone.

new_zone_user creates a new zone user and stores it in memory.

select_zone_user retrieves a zone user from Active Directory and stores
it in memory.

After you have a zone user stored in memory, you can use the following
commands to work with that zone user:

delete_zone_user deletes the selected zone user from Active Directory
and from memory.

get_zone_user_field reads a field value from the currently selected zone
user.

save_zone_user saves the selected zone user with its current settings to
Active Directory.

set_zone_user_field sets a field value in the currently selected zone user.

set_dzc_field

Use the set_dzc_field command to set the value for a specified field in the
currently selected UNIX command stored in memory. The set_dzc_field

command does not set a field value stored in Active Directory for the selected
UNIX command.

If you change any fields, you must save the UNIX command using the save_dz_
command command for your changes to take effect in Active Directory. If you

• • • • • •

ADEdit command reference 452

select another UNIX command or end the ADEdit session before saving the
currently selected UNIX command, your changes will be lost.

You can only use the set_dzc_field command to set UNIX command fields if
the currently selected zone is a classic4 or hierarchical zone. The command
does not work in other types of zones.

When executing privileged commands on computers running Security-
Enhanced Linux (SELinux), the security context contains additional
information that is used to make access control decisions.

Zone type

Classic and hierarchical

Syntax

set_dzc_field field value

Abbreviation

sdzcf

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field string Required. Specifies the name of the field you want to set. The

possible values are:

• • • • • •

ADEdit Command Reference and Scripting Guide 453

Argument Type Description
description: Text describing the UNIX command.

cmd: The UNIX command string or strings. You can
use wild cards or a regular expression.

path: The path to the command’s location. You can
use wild cards or a regular expression.

form: An integer that indicates whether the cmd
and path strings use wild cards (0) or a regular
expression (1).

dzdo_runas: A list of users and groups that can run
this command under dzdo (similar to sudo). Users
can be listed by user name or UID.

dzsh_runas: A list of users and groups that can run
this command in a restricted shell environment
(dzsh). Users can be listed by user name or UID. You
cannot set this field value if the selected zone is a
classic4 zone.

keep: A comma-separated list of environment
variables from the current user’s environment to
keep.

del: A comma-separated list of environment
variables from the current user’s environment to
delete.

add: A comma-separated list of environment
variables to add to the final set of environment
variables.

pri: An integer that specifies the command priority
for the restricted shell command object.

field
(continued)

string umask: An integer that defines who can execute the
command.

flags: An integer that specifies a combination of
different properties for the command.

selinux_role: Specifies the SELinux role to use when

• • • • • •

ADEdit command reference 454

Argument Type Description
constructing a new security context for command
execution.

selinux_type: Specifies the SELinux type to use
when constructing a new security context for
command execution.

digest: Specifies the SHA-2 digest to verify the file
checksum before command execution.

Note that selinux_role and selinux_type are only
supported on Red Hat Enterprise Linux systems and
effective only on systems with SELinux enabled and
joined to a hierarchical zone.

value Required. Specifies the value to assign to the specified field.
The data type depends on the field specified.

In most cases, you can assign an empty string or null value (0)
to unset a field value, depending on the data type of the field.

Setting the cmd and path field values

You can specify the cmd and path strings using wild cards (*, ?, and !), or as a
regular expression. If you specify the cmd and path strings using wild cards,
use an asterisk (*) to match zero or more characters, the question mark (?) to
match exactly one character, or the exclamation mark (!) to negate matching
of the specified string.

To set to the command path to the equivalent of the Standard user path
option, you can set the value of the path field to USERPATH. To set to the path
to the equivalent of the Standard system path option, set the value of the
path field to SYSTEMPATH. To set to the path to the equivalent of the System
search path option, set the value of the path field to SYSTEMSEARCHPATH.

For both the cmd and path fields, the form field controls whether the specified
string is interpreted as a regular expression or as a string that includes wild
cards.

• • • • • •

ADEdit Command Reference and Scripting Guide 455

Specifying the environment variables to use

You can use the keep, del, and add settings to control the environment
variables used by the commands specified by the cmd string. The keep and del

settings are mutually exclusive. The keep field only takes effect if the flag 16 is
included in the setting for the flag field. The del field only takes effect if the
flag 16 is not included in the setting for the flag field.

Any environment variables kept or deleted are in addition to the default set of
the user’s environment variables that are either retained or deleted. The
default set of environment variables to keep is defined in the dzdo.env_keep

configuration parameter in the centrifydc.conf file. The default set of
environment variables to delete is defined in the dzdo.env_delete

configuration parameter in the centrifydc.conf file. You can also add
environment variables to the final set of environment variables resulting from
the keep or del fields.

Specifying the command priority

You can use the pri field to specify the command priority when there are
multiple matches for the UNIX commands specified by wild cards. If
commands specified by this UNIX command object match commands
specified by another UNIX command object, the UNIX command object with
the higher command priority prevails. This field takes an integer value; the
higher the number, the higher the priority.

Specifying the umask value

You can use the umask field to define who can execute the command. The
umask field specifies a 3-digit octal value that defines read, write, or execute
permission for owner, group, and other users. The left digit defines the owner
execution rights, the middle digit defines the group execution rights, and the
right digit defines other execution rights. Each digit is a combination of binary
flags, one flag for each right as follows:

4 is read

2 is write

• • • • • •

ADEdit command reference 456

1 is execute

You add these values add together to define the rights available for each
entity. For example, an umask value of 600 indicates read and write permission
(4+2) for the owner, but no permissions for the group or other users.
Similarly, an umask value of 740 indicates read, write, execute permissions
(4+2+1) for the owner, read permissions for the group, but no permissions for
other users.

Specifying command properties using the flags field

You can use the flags field to define a combination of binary flags, with one
flag for each of the following properties:

1—Prevents nested command execution. If this flag value is not set, nested
command execution is allowed.

2—Requires re-authentication using the login user’s password.

4—Requires authentication using the run-as user’s password.

8—Preserves group membership. If this flag value is not set, group
membership is not preserved.

16—Resets environment variables for the command, deleting the variables
specified in the dzdo.env_delete parameter and keeping the variables
specified in the keep field. If this flag is not set, the command removes the
unsafe environment variables specified in the dzdo.env_delete parameter
along with any additional environment variables specified by the del field.

32—Requires multi-factor authentication to execute the command.

64—Prevents navigation up the path hierarchy when executing the command.

You add these values together to define the setting for the flags field. For
example, a flags field value of 5 prevents nested command execution and
requires authentication using the run-as user’s password (1+4). You cannot
set the 2 flag and the 4 flag or the 4 flag and the 32 flag simultaneously. If you
don't set any of these flags, re-authentication is not required.

• • • • • •

ADEdit Command Reference and Scripting Guide 457

Return value

This command returns nothing if it runs successfully.

Examples

The following example sets the current UNIX command dzdo_runas field to
root:

set_dzc_field dzdo_runas root

The following example sets the UNIX command properties so that nested
command execution is not allowed and authentication is required with the
user’s password:

sdzcf flags 3

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
UNIX command to work with:

get_dz_commands returns a Tcl list of UNIX commands in the current
zone.

list_dz_commands lists to stdout the UNIX commands in the current
zone.

new_dz_command creates a new UNIX command and stores it in
memory.

select_dz_command retrieves a UNIX command from Active Directory
and stores it in memory.

After you have a UNIX command stored in memory, you can use the following
commands to work with that command:

delete_dz_command deletes the selected command from Active
Directory and from memory.

get_dzc_field reads a field value from the currently selected command.

• • • • • •

ADEdit command reference 458

save_dz_command saves the selected command with its current settings
to Active Directory.

set_ldap_timeout

Use the set_ldap_timeout command to set the time-out interval used by
LDAP commands. LDAP commands are ADEdit commands such as select_
zone that perform read/write operations on Active Directory through a
binding. The time-out value controls how long these commands will wait for a
response before declaring a time-out and ceasing operation.

The default value is five minutes.

Zone type

Not applicable

Syntax

set_ldap_timeout timeout_in_seconds

Abbreviation

None.

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit Command Reference and Scripting Guide 459

Argument Type Description
timeout_in_
seconds

integer Required. Specifies the number of seconds to wait for a
response from Active Directory before ending an operation.

The default value is 300 seconds (5 minutes).

Return value

This command returns nothing if it runs successfully.

Examples

set_ldap_timeout 120

This example sets the LDAP time-out interval to 120 seconds (2 minutes).

Related commands

None.

set_local_group_profile_field

Use the set_local_group_profile_field command to set the value of the
specified profile field for the currently selected local UNIX or Linux group that
has a profile defined in the current zone. Before executing this command, you
must create a new local group by executing the new_local_group_profile

command, or select an existing local group by executing the select_local_

group_profile command.

You can save a group object before the group profile is complete. However,
the group profile is not added to /etc/group on each UNIX and Linux
computer in the zone until the group profile is complete and the profileflag

field is set to 1 (enabled). See new_local_group_profile for details about which
fields (attributes) a group profile must have to be considered complete.

• • • • • •

ADEdit command reference 460

Zone type

Hierarchical only.

Syntax

set_local_group_profile_field field_name value

Abbreviation

slgpf

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field_name string Required. Specifies the local group profile field to set. The

possible values are:

gid

member

profileflag

You can also specify AIX extended attributes as the field to set
an extended attribute value for a group. Extended attribute
fields start with the aix. prefix. For example, the admin

extended attribute can be set by specifying aix.admin as the
field.

value Required. The data type depends on the field being set. The
possible values for each field are:

• • • • • •

ADEdit Command Reference and Scripting Guide 461

Argument Type Description
Any field: Clear any field by entering a hyphen
character (-).

gid: A numeric group identifier.

member: The UNIX name of a local user to add to
the group.

profileflag: 1 or 3.

If set to 1, the group profile is enabled. If the group
profile is complete and the profile flag is set to 1, the
profile will be installed or updated in /etc/group at the
next local account refresh interval.

If set to 3, the group profile is removed from
/etc/group at the next local account refresh interval.

Return value

This command returns nothing if it runs successfully.

Examples

The following example sets the GID of the currently selected group to 20001.

set_local_group_profile_field gid 20001

The following example adds the UNIX user anton.splieth to the currently
selected local group.

set_local_group_profile_field member anton.splieth

The following example sets the profile flag of the currently selected group to 1

(enabled), so that if the group profile is complete, the profile will be installed
or updated in /etc/group at the next local account refresh interval.

set_local_group_profile_field profileflag 1

If the current group is on AIX, you can set group AIX extended attributes and
values. For example, to identify the current group as an administrative group,
you can set the admin extended attribute:

• • • • • •

ADEdit command reference 462

set_local_group_profile_field aix.admin true

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

• • • • • •

ADEdit Command Reference and Scripting Guide 463

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_user_profile_field sets the value of a field for the currently
selected local UNIX or Linux user that has a profile defined in the current
zone.

set_local_user_profile_field

Use the set_local_user_profile_field command to set the value of the
specified profile field for the currently selected local UNIX or Linux user that
has a profile defined in the current zone. Before executing this command, you
must create a new local user by executing the new_local_user_profile

command, or select an existing local user by executing the select_local_

user_profile command.

You can save a user object before the user profile is complete. However, the
user profile is not added to /etc/passwd on each UNIX and Linux computer in
the zone until the user profile is complete, the profileflag field is set to 1

(enabled) or 2 (disabled), and the user is assigned a visible role such as local
listed. See new_local_user_profile for details about which attributes a user
profile must have to be considered complete.

Zone type

Hierarchical only.

Syntax

set_local_user_profile_field field_name value

• • • • • •

ADEdit command reference 464

Abbreviation

slupf

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field_name

value

String Required. Specifies the local user profile field to set. Fields and
possible values are:

Any field: Clear any field by entering a hyphen
character (-).

uid: The user’s numeric identifier.

gid: The user’s primary group numeric identifier.

shell: The local user’s default shell on the local
computer. Possible values are: /bin/bash,
/bin/csh, /bin/ksh, /bin/sh, /bin/tcsh, %

{shell}.

home: The local user’s default home directory on
the local computer.

gecos: General information about the local user
account.

profileflag: The value of the user’s profile flag as set
in the user object in the zone. For the user to be
managed by the agent, the profile flag must be set
to 1 , 2, or 3.

If set to 1, the user profile is enabled. If the user profile is
complete, the profile flag is set to 1, and the user is
assigned a visible role, the profile will be installed or

• • • • • •

ADEdit Command Reference and Scripting Guide 465

Argument Type Description
updated in /etc/passwd at the next local account
refresh interval.

If set to 2, the user profile is disabled. If the user profile
is complete, the profile flag is set to 2, and the user is
assigned a visible role, the profile will be installed or
updated in /etc/passwd at the next local account
refresh interval. However, the password field in
/etc/passwd will be set to !!, and the user will not be
able to log into the local computer. This state results in
what is typically called a “locked account.”

If set to 3, the user profile is removed from
/etc/passwd at the next local account refresh interval.

Return value

This command returns nothing if it runs successfully.

Examples

The following example sets the UID of the currently selected user to 10001.

set_local_user_profile_field uid 10001

The following example sets the primary group ID for the currently selected
user to 20001.

set_local_user_profile_field gid 20001

The following example sets the default shell for the currently selected user to
/bin/csh:

set_local_user_profile_field shell /bin/csh

The following example sets the home directory for the currently selected user
to /home.

set_local_user_profile_field home /home

The following example sets the profile flag of the currently selected user to 1

(enabled), so that if the user profile is complete and the user is assigned a

• • • • • •

ADEdit command reference 466

visible role, the profile will be installed or updated in /etc/passwd at the next
local account refresh interval.

set_local_user_profile_field profileflag 1

Related commands

The following related ADEdit commands let you view and administer local
UNIX and Linux users and groups that have profiles defined in the current
zone:

delete_local_group_profile deletes a local UNIX or Linux group that has a
profile defined in the current zone.

delete_local_user_profile deletes a local UNIX or Linux user that has a
profile defined in the current zone.

get_local_group_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux group that has a profile defined in
the current zone.

get_local_groups_profile displays a TCL list of profiles for local groups
that are defined in the current zone.

get_local_user_profile_field displays the value of a profile field for the
currently selected local UNIX or Linux user that has a profile defined in
the current zone.

get_local_users_profile displays a TCL list of profiles for local users that
are defined in the current zone.

list_local_groups_profile displays a list of local UNIX and Linux groups
that have a profile defined in the current zone.

list_local_users_profile displays a list of local UNIX and Linux users that
have a profile defined in the current zone.

new_local_group_profile creates an object for a local UNIX or Linux group
in the currently selected zone.

new_local_user_profile creates an object for a local UNIX or Linux user in
the currently selected zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 467

save_local_group_profile saves the currently selected local UNIX or Linux
group object after you create the group object or edit profile field values
in the group object.

save_local_user_profile saves the currently selected local UNIX or Linux
user object after you create the user object or edit profile field values in
the user object.

select_local_group_profile selects a local UNIX or Linux group object for
viewing or editing.

select_local_user_profile selects a local UNIX or Linux user object for
viewing or editing.

set_local_group_profile_field sets the value of a field for the currently
selected local UNIX or Linux group that has a profile defined in the
current zone.

set_object_field

Use the set_object_field command to set the value for a specified field in
the currently selected Active Directory object stored in memory. The set_

object_field command does not set a field value stored in Active Directory
for this object.

If you change any fields, you must save the object using the save_object
command for your changes to take effect in Active Directory. If you select
another object or end the ADEdit session before saving the currently selected
object, your changes will be lost.

The set_object_field command does not check to see if fields and values
are valid. When you save an object, Active Directory will check fields and
values at that time and report an error if they aren’t valid.

Zone type

Not applicable

• • • • • •

ADEdit command reference 468

Syntax

set_object_field field value

Abbreviation

sof

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field string Required. Specifies the name of the field you want to set.

The field argument can by any attribute that is valid for the
type of Active Directory object currently selected in memory.

value Required. Specifies the value to assign to the specified field.
The data type depends on the specified field.

The set_object_field command does not check whether the
value is valid. Active Directory will check for valid values when
ADEdit saves the object.

Return value

This command returns nothing if it runs successfully.

Examples

set_object_field sd $sdvalue

• • • • • •

ADEdit Command Reference and Scripting Guide 469

This example sets the current object’s security descriptor field to the string
contained in the variable sdvalue (an SDDL string).

Related commands

The following commands enable you to view and select Active Directory
objects:

get_objects performs an LDAP search of Active Directory and returns a
Tcl list of the distinguished names of objects matching the specified
search criteria.

new_object creates a new Active Directory object and stores it in
memory.

select_object retrieves an object with its attributes from Active Directory
and stores it in memory.

After you have an object stored in memory, you can use the following
commands to work with that object:

add_object_value adds a value to a multi-valued field attribute of the
currently selected Active Directory object.

delete_object deletes the selected Active Directory object from Active
Directory and from memory.

delete_sub_tree deletes an Active Directory object and all of its children
from Active Directory.

get_object_field reads a field value from the currently selected Active
Directory object.

remove_object_value removes a value from a multi-valued field attribute
of the currently selected Active Directory object.

save_object saves the selected Active Directory object with its current
settings to Active Directory.

set_pam_field

Use the set_pam_field command to set the value for a specified field in the
currently selected PAM application right stored in memory. The set_pam_

• • • • • •

ADEdit command reference 470

field command does not set a field value stored in Active Directory for this
PAM application right.

If you change any fields, you must save the PAM application right using the
save_pam_app command for your changes to take effect in Active Directory. If
you select another PAM application right or end the ADEdit session before
saving the currently selected PAM application right, your changes will be lost.

You can only use the set_pam_field command if the currently selected zone
is a classic4 or hierarchical zone. The command does not work in other types
of zones.

Zone type

Classic and hierarchical

Syntax

set_pam_field field value

Abbreviation

spf

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field string Required. Specifies the name of the field that you want to set.

The possible values are:

• • • • • •

ADEdit Command Reference and Scripting Guide 471

Argument Type Description
application: The name of the PAM application that
is allowed to use the adclient PAM authentication
service. The name can be literal, or it can contain ?
or * wildcard characters to specify multiple
applications.

description: Text describing the PAM application.

Note that in a classic zone, setting the application field
changes the name of the PAM application right. For example,
assume you create a new PAM application right in a classic
zone using a command like this:

new_pam_app myftp

If you then use this command to set the application field like
this:

set_pam_field application newftp

The PAM application right itself will be renamed. If you were to
use the list_pam_apps command after running the set_

pam_field command, the right would be returned as newftp:

list_pam_apps

newftp : Renamed application right

value Required. Specifies the value to assign to the specified field.

In most cases, you can assign an empty string to unset a field
value.

Return value

This command returns nothing if it runs successfully.

Examples

set_pam_field application *

This example sets the application field for the current PAM application right
to allow PAM access rights to all applications (* is the wildcard for all possible
strings).

• • • • • •

ADEdit command reference 472

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
PAM application rights:

get_pam_apps returns a Tcl list of PAM application rights in the current
zone.

list_pam_apps lists to stdout the PAM application rights in the currently
selected zone.

new_pam_app creates a new PAM application right and stores it in
memory.

select_pam_app retrieves a PAM application right from Active Directory
and stores it in memory.

After you have a PAM application right stored in memory, you can use the
following commands to work with that PAM application right:

delete_pam_app deletes the selected PAM application right from Active
Directory and from memory.

get_pam_field reads a field value from the currently selected PAM
application right.

save_pam_app saves the selected PAM application right with its current
settings to Active Directory.

set_role_assignment_field

Use the set_role_assignment_field command to sets the value for a
specified field in the currently selected role assignment stored in memory.
The set_role_assignment_field command does not set a field value stored
in Active Directory for this role assignment.

If you change any fields, you must save the role assignment using the save_
role_assignment command for your changes to take effect in Active Directory.
If you select another role assignment or end the ADEdit session before saving
the currently selected role assignment, your changes will be lost.

• • • • • •

ADEdit Command Reference and Scripting Guide 473

You can only use the set_role_assignment_field command if the currently
selected zone is a classic4 or hierarchical zone. The command does not work
in other types of zones.

Zone type

Classic and hierarchical

Syntax

set_role_assignment_field field value

Abbreviation

sraf

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field string Required. Specifies the name of the field that you want to

set. The possible values are:

customAttr: Sets custom text strings for the role
assignment. This field is only applicable for
hierarchical zones.

description: Sets the description for the role
assignment.

• • • • • •

ADEdit command reference 474

Argument Type Description
from: Sets the starting date and time for the role
assignment. The date and time is expressed in
standard UNIX time. The Tcl clock command
manipulates these time values. A value of 0
means no starting date and time for the role
assignment.

role: Sets the name of the role to assign and the
zone in which the role was defined.

The zone value is optional if the role is defined in the
currently selected zone. The zone is required if the
role is defined in another zone.

to: Sets the ending date and time for the role
assignment.

The start and end dates and times are expressed in
standard UNIX time. You can use the Tcl clock
command to manipulate these values. A value of 0
indicates no date or time is set for the role
assignment.

value depends
on field

Required. Specifies the value to assign to the specified field.

In some cases, you can assign a dash (-) or an empty string
to unset a field value. However, this is not supported for all
fields or all zone types.

Return value

This command returns nothing if it runs successfully.

Examples

set_role_assignment_field role su-root/global

This example assigns the role named su-root that is defined in the global

zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 475

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
role assignment:

get_role_assignments returns a Tcl list of role assignments in the current
zone.

list_role_assignments lists to stdout the role assignments in the current
zone.

new_role_assignment creates a new role assignment and stores it in
memory.

select_role_assignment retrieves a role assignment from Active Directory
and stores it in memory.

After you have a role assignment stored in memory, you can use the following
commands to work with that role assignment:

delete_role_assignment deletes the selected role assignment from Active
Directory and from memory.

get_role_assignment_field reads a field value from the currently selected
role assignment.

save_role_assignment saves the selected role assignment with its
current settings to Active Directory.

set_role_field

Use the set_role_field command to set the value for a specified field in the
currently selected role stored in memory. The set_role_field does not set a
field value stored in Active Directory for this role.

If you change any fields, you must save the role using the save_role command
for your changes to take effect in Active Directory. If you select another role or
end the ADEdit session before saving the currently selected role, your
changes will be lost.

• • • • • •

ADEdit command reference 476

You can only use the set_role_field command if the currently selected zone
is a classic4 or hierarchical zone. The command does not work in other types
of zones.

Zone type

Classic and hierarchical

Syntax

set_role_field field value

Abbreviation

srf

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field string Required. Specifies the name of the field that you want to set.

value Required. Specifies the value to assign to the specified field.

In most cases, you can assign an empty string or null value (0)
to unset a field value, depending on the data type of the field.

The data type required depends on the field you are setting. The possible
values are:

• • • • • •

ADEdit Command Reference and Scripting Guide 477

allowLocalUser: Set the value to true to allow local users to be assigned
to the role, or false if local users should not be assigned to the role. This
field is not applicable in classic zones. The valid values are 1, y, yes, or
true to enable or 0, n, no, or false to disable. All other values throw an
exception.

AlwaysPermitLogin: Set the value to true to enable “rescue rights” for
users assigned to the role, or false if “rescue rights” should not be
applied to the role. This field is not applicable in classic zones. The valid
values are 1, y, yes, or true to enable or 0, n, no, or false to disable. All
other values throw an exception.

auditLevel: Set the value to one of the following to specify whether
auditing is not requested, requested but not required, or required:

AuditIfPossible

AuditNotRequested

AuditRequired

This field is not applicable in classic zones.

customAttr: Sets custom text strings for the role. This field is only
applicable for hierarchical zones.

description: Set the value to a text string that describes the role.

sysrights: Set the value to specify the system rights granted to the role.
This value is an integer that represents a combination of binary flags,
one for each right. This field is not applicable in classic zones.

timebox: Set the value to indicate the hours in the week when the role is
enabled. This value is a 42-digit hexadecimal number. When represented
in binary, each bit represents an hour of the week as described in the
appendix Timebox value format

visible: Returns true or false depending on whether “User is visible” right
is configured for the role. You cannot get this field value if the selected
zone is a classic zone.

Setting the system rights field value for a role

You can specify the sysrights field to define the system rights that you want
to grant to the currently selected role. This field value is an integer that

• • • • • •

ADEdit command reference 478

represents a combination of binary flags, with one flag for each of the
following system rights:

1—Password login and non password (SSO) login are allowed.

2—Non password (SSO) login is allowed.

4—Account disabled in Active Directory can be used by sudo, cron, etc.

8—Log in with non-restricted shell.

16—Audit not requested/required.

32—Audit required.

64—Always permit to login.

128—Remote login access is allowed for Windows computers.

256—Console login access is allowed for Windows computers.

512—Require multi-factor authentication through the Centrify connector to
log on.

1024—PowerShell remote access is allowed

These values are added together to define the sysrights field value. For
example, a sysrights value of 6 indicates that the role is configured to allow
single sign-on login and to ignore disabled accounts (2+4). A value of 11
indicates that most common UNIX system rights are enabled (1+2+8). A value
of 384 indicates that most common Windows system rights are enabled
(128+256).

Return value

This command returns nothing if it runs successfully.

Examples

The following example sets the system rights for the current role to allow SSO
login (2) and to provide a full shell (8):

set_role_field sysrights 10

The following example sets the current role to require auditing:

• • • • • •

ADEdit Command Reference and Scripting Guide 479

set_role_field auditLevel AuditRequired

Note that the sysrights field is a bit field, so you can add and remove bits for
the field instead of setting the integer value directly. For example to add the
system rights for single sign-on and full shell to existing system rights, you
might use commands similar to this:

set sr [get_role_field sysrights]

set_role_field sysrights [expr { $sr | 10 }]

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
roles:

get_roles returns a Tcl list of roles in the current zone.

list_roles lists to stdout the roles in the current zone.

new_role creates a new role and stores it in memory.

select_role retrieves a role from Active Directory and stores it in
memory.

After you have a role stored in memory, you can use the following commands
to work with that role:

add_command_to_role adds a UNIX command to the current role.

add_pamapp_to_role adds a PAM application right to the current role.

delete_role deletes the selected role from Active Directory and from
memory.

get_role_apps returns a Tcl list of the PAM applications associated with
the currently selected role.

get_role_commands returns a Tcl list of the UNIX commands associated
with the current role.

get_role_field reads a field value from the currently selected role.

list_role_rights returns a list of all UNIX commands and PAM application
rights associated with the current role.

• • • • • •

ADEdit command reference 480

remove_command_from_role removes a UNIX command from the
current role.

remove_pamapp_from_role removes a PAM application from the current
role.

save_role saves the selected role with its current settings to Active
Directory.

set_rs_env_for_role

Use the set_rs_env_for_role command to assign a restricted shell
environment to the currently selected role that is stored in memory. You
should note that a role can only have one restricted shell environment
assigned to it. If you assign a new restricted shell environment to a role, the
current restricted shell environment—if one exists—will be removed. In
addition, a role cannot be defined with both privileged commands and a
restricted shell environment at the same time. If you assign a restricted shell
environment to the currently selected role, all privileged commands
previously defined for the role—if they exist—will be removed from the role.

The set_rs_env_for_role command does not modify the data stored in
Active Directory for the restricted shell environment. If you run this command
using ADEdit without saving the role to Active Directory, your changes do not
take effect.

You can only use the set_rs_env_for_role command if the currently
selected zone is a classic4 zone. The command does not work in other types of
zones.

Zone type

Classic only

Syntax

set_rs_env_for_role environment

• • • • • •

ADEdit Command Reference and Scripting Guide 481

Abbreviation

srse

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
environment string Required. Specifies the name of the restricted shell

environment to assign to the current role.

Return value

This command returns nothing if it runs successfully.

Examples

set_rs_env_for_role rse1

This example sets the currently selected role’s restricted shell environment to
rse1, and removes any existing restricted shell environment or privileged
commands if they exist in the role.

Related commands

The following commands perform actions related to this command:

clear_rs_env_from_role removes a restricted shell environment from the
current role.

• • • • • •

ADEdit command reference 482

get_rs_envs returns a Tcl list of restricted shell environments.

list_rs_envs lists to stdout the restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

After you have a restricted shell environment stored in memory, you can use
the following commands to work with that: restricted shell environment:

delete_rs_env deletes the current restricted shell environment from
Active Directory and from memory.

get_rse_field reads a field value from the current restricted shell
environment.

save_rs_env saves the restricted shell environment to Active Directory.

set_rsc_field

Use the set_rsc_field command to set the value for a specified field for the
currently selected restricted shell command that is stored in memory. The
set_rsc_field command does not set the field value stored in Active
Directory for the selected restricted command field.

If you change any fields, you must save the restricted shell command using
the save_rs_command command for your changes to take effect in Active
Directory. If you select another restricted shell command or end the ADEdit
session before saving the currently selected restricted shell command, your
changes will be lost.

You can only use the set_rsc_field command if the currently selected zone
is a classic4 zone is the selected zone. The command does not work in other
types of zones.

Zone type

Classic only

• • • • • •

ADEdit Command Reference and Scripting Guide 483

Syntax

set_rsc_field field value

Abbreviation

srscf

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field string Required. Specifies the name of the field whose value you want

to set.

value Required. Specifies the value you want to assign to the
specified field. The data type depends on the field specified.

In most cases, you can assign an empty string or null value (0)
to unset a field value, depending on the data type of the field.

The possible field values are:

description: Text describing the restricted shell command.

cmd: The restricted shell command string or strings. You can use wild
cards or a regular expression.

path: The path to the command’s location. You can use wild cards or a
regular expression.

form: An integer that indicates whether the cmd and path strings use
wild cards (0) or a regular expression (1).

• • • • • •

ADEdit command reference 484

dzsh_runas: A list of users and groups that can run this command in a
restricted shell environment (dzsh). Users can be listed by user name or
UID.

keep: A comma-separated list of environment variables from the current
user’s environment to keep.

del: A comma-separated list of environment variables from the current
user’s environment to delete.

add: A comma-separated list of environment variables to add to the final
set of environment variables.

pri: An integer that specifies the command priority for the restricted
shell command object.

umask: An integer that defines who can execute the command.

flags: An integer that specifies a combination of different properties for
the command.

createTime: The time and date this command was created, returned in
generalized time format.

modifyTime: The time and date this command was last modified,
returned in generalized time format.

dn: The command’s distinguished name.

Setting the cmd and path field values for a restricted
command

You can specify the cmd and path strings using wild cards (*, ?, and !), or as a
regular expression. If you specify the cmd and path strings using wild cards,
use an asterisk (*) to match zero or more characters, the question mark (?) to
match exactly one character, or the exclamation mark (!) to negate matching
of the specified string.

For both the cmd and path fields, the form field controls whether the specified
string is interpreted as a regular expression or as a string that includes wild
cards.

• • • • • •

ADEdit Command Reference and Scripting Guide 485

Specifying the environment variables for a restricted
command

You can use the keep, del, and add settings to control the environment
variables used by the commands specified by the cmd string. The keep and del

settings are mutually exclusive. The keep field only takes effect if the flag 16 is
included in the setting for the flag field. The del field only takes effect if the
flag 16 is not included in the setting for the flag field.

Any environment variables kept or deleted are in addition to the default set of
the user’s environment variables that are either retained or deleted. The
default set of environment variables to keep is defined in the dzdo.env_keep

configuration parameter in the centrifydc.conf file. The default set of
environment variables to delete is defined in the dzdo.env_delete

configuration parameter in the centrifydc.conf file. You can also add
environment variables to the final set of environment variables resulting from
the keep or del fields.

Specifying the restricted command priority

You can use the pri field to specify the command priority when there are
multiple matches for the restricted shell command object specified by wild
cards. If there are multiple commands specified by this restricted shell
command object, the restricted shell command with the higher command
priority prevails.

Specifying the umask value for restricted commands

You can use the umask field to define who can execute the command. The
umask field specifies a 3-digit octal value that defines read, write, or execute
permission for owner, group, and other users. The left digit defines the owner
execution rights, the middle digit defines the group execution rights, and the
right digit defines other execution rights. Each digit is a combination of binary
flags, one flag for each right as follows:

4 is read

2 is write

• • • • • •

ADEdit command reference 486

1 is execute

You add these values add together to define the rights available for each
entity. For example, a umask value of 600 indicates read and write permission
(4+2) for the owner, but no permissions for the group or other users.
Similarly, a umask value of 740 indicates read, write, execute permissions
(4+2+1) for the owner, read permissions for the group, but no permissions for
other users.

Specifying restricted command properties using the flags
field

You can use the flags field to define a combination of binary flags, with one
flag for each of the following properties:

1 to prevent nested command execution. If this flag value is not set,
nested command execution is allowed.

2 to require authentication with the user’s password. You cannot set this
flag and the 4 flag simultaneously. If neither 2 nor 4 is set, authentication
is not required.

4 to require authentication with the run-as user’s password

If you do not set the 2 flag or the 4 flag, authentication is not required.

8 to preserve group membership. If this flag value is not set, group
membership is not preserved.

16 to reset environment variables for the command, deleting the
variables specified in the dzdo.env_delete parameter and keeping the
variables specified in the keep field. If this flag is not set, the command
removes the unsafe environment variables specified in the dzdo.env_

delete parameter along with any additional environment variables
specified by the del field

You add these values together to define the setting for the flags field. For
example, a flags field value of 5 prevents nested command execution and
requires authentication using the run-as user’s password (1+4).

• • • • • •

ADEdit Command Reference and Scripting Guide 487

Return value

This command returns nothing if it runs successfully.

Examples

set_rsc_field description {This is the restricted command
description}

This example sets the current restricted shell command description field to
the “This is the restricted command description” text string.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select the
restricted shell command to work with:

get_rs_commands returns a Tcl list of restricted shell commands in the
current zone.

list_rs_commands lists to stdout the restricted shell commands in the
current zone.

new_rs_command creates a new restricted shell command and stores it
in memory.

select_rs_command retrieves a restricted shell command from Active
Directory and stores it in memory.

After you have a restricted shell command stored in memory, you can use the
following commands to work with that restricted shell command:

delete_rs_command deletes the selected command from Active
Directory and from memory.

get_rsc_field reads a field value from the currently selected command.

save_rs_command saves the selected command with its current settings
to Active Directory.

• • • • • •

ADEdit command reference 488

set_rse_field

Use the set_rse_field command to set the value for a specified field in the
currently selected restricted shell environment that is stored in memory. The
set_rse_field command does not set the field value stored in Active
Directory for this restricted shell environment.

This command only sets the field value that is stored in memory. You must
save the restricted shell environment using the save_rs_env command for
your changes to take effect in Active Directory. If you select another restricted
shell environment or end the ADEdit session before saving the currently
selected restricted shell environment, your changes will be lost.

You can only use the set_rse_field command if the currently selected zone
is a classic4 zone. The command does not work in other type of zones.

Zone type

Classic only

Syntax

set_rse_field field value

Abbreviation

srsef

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit Command Reference and Scripting Guide 489

Argument Type Description
field string Required. Specifies the name of the field whose value you

want to set. The only possible value is:

description: Text describing the restricted shell
environment.

value depends
on field

Required. Specifies the value to assign to the specified
field.

In most cases, you can assign an empty string to unset a
field value.

Return value

This command returns nothing if it runs successfully.

Examples

set_rse_field description {This string is the restricted
shell description}

This example sets the description field for the current restricted shell
environment to the “This string is the restricted shell description” text string.

Related commands

Before you use this command, you must have a currently selected role stored
in memory. The following commands enable you to view and select the role to
work with restricted shell environments:

get_rs_envs returns a Tcl list of restricted shell environments.

list_rs_envs lists to stdout the restricted shell environments.

new_rs_env creates a new restricted shell environment and stores it in
memory.

select_rs_env retrieves a restricted shell environment from Active
Directory and stores it in memory.

• • • • • •

ADEdit command reference 490

After you have a restricted shell environment stored in memory, you can use
the following commands to work with its fields:

delete_rs_env deletes the current restricted shell environment from
Active Directory and from memory.

get_rse_field reads a field value from the current restricted shell
environment.

save_rs_env saves the restricted shell environment to Active Directory.

set_sd_owner

Use the set_sd_owner command to set the owner of a security descriptor
(SD). This command requires you to specify the security descriptor in SDDL
(security descriptor definition language) form and the security identifier (SID)
of the owner. The command sets and returns the updated security descriptor
in SDDL form with the new owner.

Zone type

Not applicable

Syntax

set_sd_owner sddl_string owner_sid

Abbreviation

sso

Options

This command takes no options.

• • • • • •

ADEdit Command Reference and Scripting Guide 491

Arguments

This command takes the following arguments:

Argument Type Description
sddl_string string Required. Specifies a security descriptor in SDDL format.

owner_sid string Required. Specifies the security identifier (SID) of the owner to
set.

Return value

This command returns an security descriptor in SDDL format if it runs
successfully. The security descriptor contains the new owner set by the
command.

Examples

This example sets a new owner for a security descriptor. The security
descriptor is the first long string after the command. The SID of the new
owner is the much shorter string at the end of the command (shown in
boldface).

set_sd_owner O:DAG:DAD:AI(A;;RCWDWOCCDCLCSWRPWPLOCR;;;DA)
(OA;;CCDC;bf967aba-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;bf967a9c-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;bf967aa8-0de6-11d0-a285-00aa003049e2;;PO)
(A;;RCLCRPLO;;;AU)(OA;;CCDC;4828cc14-1437-45bc-9b07-
ad6f015e5f28;;AO)(OA;CIIOID;RP;4c164200-20c0-11d0-a768-
00aa006e0529;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;4c164200-20c0-11d0-a768-
00aa006e0529;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)

• • • • • •

ADEdit command reference 492

(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a86-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a9c-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967aba-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RCLCRPLO;;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RCLCRPLO;;bf967a9c-0de6-11d0-
a285-00aa003049e2;RU)(OA;CIIOID;RCLCRPLO;;bf967aba-0de6-
11d0-a285-00aa003049e2;RU)(OA;CIID;RPWPCR;91e647de-d96f-
4b70-9557-d63ff4f3ccd8;;PS)
(A;CIID;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;EA)(A;CIID;LC;;;RU)
(A;CIID;SDRCWDWOCCLCSWRPWPLOCR;;;BA) S-1-5-21-1076040321-
332654908-468068287-1109

This example returns the updated security descriptor:

O:S-1-5-21-1076040321-332654908-468068287-1109G:DAD:AI
(A;;RCWDWOCCDCLCSWRPWPLOCR;;;DA)(OA;;CCDC;bf967aba-0de6-
11d0-a285-00aa003049e2;;AO)(OA;;CCDC;bf967a9c-0de6-11d0-
a285-00aa003049e2;;AO)(OA;;CCDC;bf967aa8-0de6-11d0-a285-
00aa003049e2;;PO)(A;;RCLCRPLO;;;AU)(OA;;CCDC;4828cc14-1437-
45bc-9b07-ad6f015e5f28;;AO)(OA;CIIOID;RP;4c164200-20c0-
11d0-a768-00aa006e0529;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RP;4c164200-20c0-11d0-a768-
00aa006e0529;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;5f202010-79a5-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;bc0ac240-79a9-11d0-9020-
00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;59ba2f42-79a2-11d0-9020-
00c04fc2d3cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)

• • • • • •

ADEdit Command Reference and Scripting Guide 493

(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)
(OA;CIIOID;RP;037088f8-0ae1-11d2-b422-
00a0c968f939;bf967aba-0de6-11d0-a285-00aa003049e2;RU)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a86-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967a9c-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RP;b7c69e6d-2cc7-11d2-854e-
00a0c983f608;bf967aba-0de6-11d0-a285-00aa003049e2;ED)
(OA;CIIOID;RCLCRPLO;;4828cc14-1437-45bc-9b07-
ad6f015e5f28;RU)(OA;CIIOID;RCLCRPLO;;bf967a9c-0de6-11d0-
a285-00aa003049e2;RU)(OA;CIIOID;RCLCRPLO;;bf967aba-0de6-
11d0-a285-00aa003049e2;RU)(OA;CIID;RPWPCR;91e647de-d96f-
4b70-9557-d63ff4f3ccd8;;PS)
(A;CIID;SDRCWDWOCCDCLCSWRPWPDTLOCR;;;EA)(A;CIID;LC;;;RU)
(A;CIID;SDRCWDWOCCLCSWRPWPLOCR;;;BA)

Related commands

The following commands perform actions related to this command:

explain_sd converts an SD in SDDL format to a human-readable form.

remove_sd_ace removes an access control entry (ACE) from an SD.

add_sd_ace adds an access control entry to an SD.

set_user_password

Use the set_user_password command to set a new password for an Active
Directory user or computer in Active Directory.

Zone type

Not applicable

Syntax

set_user_password UPN password

• • • • • •

ADEdit command reference 494

Abbreviation

sup

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
UPN string Required. Specifies the user principal name (UPN) of the user

or computer whose password will be reset.

password string Required. Specifies the text string to set as the new password.

If the string contains characters that might be misinterpreted
by ADEdit’s Tcl interpreter ($, for example), enclose the string in
braces { } so that all characters are interpreted literally with no
substitutions.

Return value

This command returns nothing if it runs successfully.

Examples

set_user_password adam.avery@acme.com {B4uC$work}

This example sets the password for adam.avery@acme.com to B4uC$work.

Related commands

None.

• • • • • •

ADEdit Command Reference and Scripting Guide 495

set_zone_computer_field

Use the set_zone_computer_field command to set the value for a specified
field in the currently selected zone computer stored in memory. The set_

zone_computer_field command does not set a field value stored in Active
Directory for this zone computer.

If you change any fields, you must save the zone computer using the save_
zone_computer command for your changes to take effect in Active Directory.
If you select another zone computer or end the ADEdit session before saving
the currently selected zone computer, your changes will be lost.

Zone type

Classic and hierarchical

Syntax

set_zone_computer_field field value

Abbreviation

szcf

Options

This command takes no options.

Arguments

This command takes the following arguments:

• • • • • •

ADEdit command reference 496

Argument Type Description
field string Required. Specifies the name of the field whose value want set.

The possible values are:

cpus: Set to a positive integer for the number of
CPUs in the computer.

enabled: Set the value to 1, y, yes, or true if the
computer is enabled in the zone or to 0, n, no, or
false if the computer is not enabled in the zone. All
other values throw an exception.

licensetype: Specifies the type of license a
computer uses. The valid values for this field are
server or workstation.

value Required. Specifies the value to assign to the specified field.

In some cases, you can assign a dash (-) to a field to unset the
field value. However, this is not supported for all fields or all
zone types.

Return value

This command returns nothing if it runs successfully.

Examples

set_zone_computer_field cpus 2

This example sets the current zone computer’s number of CPUs to 2.

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and manage
the zone computers:

• • • • • •

ADEdit Command Reference and Scripting Guide 497

get_zone_computers returns a Tcl list of the Active Directory names of all
zone computers in the current zone.

list_zone_computers lists to stdout the zone computers in the current
zone.

new_zone_computer creates a new zone computer and stores it in
memory.

select_zone_computer retrieves a zone computer from Active Directory
and stores it in memory.

After you have a zone computer stored in memory, you can use the following
commands to work with that zone computer:

delete_zone_computer deletes the zone computer from Active Directory
and from memory.

get_zone_computer_field reads a field value from the currently selected
zone computer.

save_zone_computer saves the zone computer with its current settings
to Active Directory.

set_zone_computer_field sets a field value in the currently selected zone
computer.

set_zone_field

Use the set_zone_field command to set the value for a specified field in the
currently selected zone stored in memory. The set_zone_field command
does not set a field value stored in Active Directory for the selected zone.

If you change any fields, you must save the zone using the save_zone
command for your changes to take effect in Active Directory. If you select
another zone or end the ADEdit session before saving the currently selected
zone, your changes will be lost.

This command is not applicable if the currently selected zone is a classic-
computer zone. You cannot set zone field values for classic-computer zones.

• • • • • •

ADEdit command reference 498

Zone type

Classic and hierarchical

Syntax

set_zone_field field value

Abbreviation

szf

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field string Required. Specifies the name of the field that you want to set.

value Required. Specifies the value to assign to the specified field.

In most cases, you can assign an empty string to unset the field
value. For more information about the values set by the zone
fields, see the Field value section.

The data type required depends on the field you are setting. The possible
field values are:

availableshells: Sets the list of shells available to choose from when
adding new users to the zone.

block.parent.zgroup: Sets the value of the block.parent.zgroup field
in the zone object’s description.

• • • • • •

ADEdit Command Reference and Scripting Guide 499

cloudurl: Sets the URL of the cloud instance associated with the selected
zone.

computers: Sets the UPN of the computer group assigned to the
selected computer role.

customAttr: Sets custom text strings for the zone. This field is only
applicable for hierarchical zones.

defaultgid: Sets the default primary group to assign to new users.

defaultgecos: Sets the default GECOS data to assign to new users.

defaulthome: Sets the default home directory to assign to new users.

defaultshell: Sets the default shell to assign to new users.

description: Sets the text string that describes the zone.

gidnext: Sets the next GID to use when auto-assigning GID numbers to
new groups.

gidreserved: Sets the GID number or range of numbers (1-100) that are
reserved.

groupname: Sets the default group name used for new groups in the
zone.

nisdomain: Sets the name of the NIS domain for NIS clients to use.

nssvar: Sets the NSS substitution variable to add to the zone’s list of
substitution variables.

parent: Sets the distinguished name of the zone’s parent zone.

sfudomain: Sets the Windows domain name for the SFU zone.

sid2iddomainmap: Sets the domain ID map for the seleted zone. Specify
the mapping with a comma-separated key value pairs string. See the
examples section for a sample command with this field. Note that the
range of domain IDs is 0 to 511. Duplicate mapping entries are not
allowed (domain names are not case-sensitive). This field is not
supported for auto zones nor classic zones.

uidnext: Sets the next UID to use when auto-assigning UID numbers to
new users.

uidreserved: Sets the UID number or range of numbers (1-100, for
example) that are reserved.

• • • • • •

ADEdit command reference 500

username: Sets the default user name used for new users in the zone.

Return value

This command returns nothing if it runs successfully.

Examples

The following example sets the computer group associated with the currently
selected computer role to linux_machines in the domain acme.com:

set_zone_field computers linux_machines@acme.com

The following example sets the parent zone of the current zone to global in
the domain acme.com:

szf parent “CN=global,CN=zones,CN=Centrify,CN=Program
Data,DC=acme,DC=com”

The following example sets the domain ID mapping for the selected zone:

set_zone_field sid2iddomainmap
domain0.test=0,domain1.test=1,domain2.test=2

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
zone to work with:

create_zone creates a new zone in Active Directory.

get_zones returns a Tcl list of all zones within a specified domain.

select_zone retrieves a zone from Active Directory and stores it in
memory.

After you have a zone stored in memory, you can use the following commands
to work with that zone:

• • • • • •

ADEdit Command Reference and Scripting Guide 501

delegate_zone_right delegates a zone use right to a specified user or
computer.

delete_zone deletes the selected zone from Active Directory and
memory.

get_child_zones returns a Tcl list of child zones, computer roles, or
computer zones.

get_zone_field reads a field value from the currently selected zone.

get_zone_nss_vars returns the NSS substitution variable for the selected
zone.

save_zone saves the selected zone with its current settings to Active
Directory.

set_zone_group_field

Use the set_zone_group_field command to set the value for a specified field
in the currently selected zone group stored in memory. The set_zone_group_

field command does not set a field value stored in Active Directory for the
selected zone group.

If you change any fields, you must save the zone group using the save_zone_
group command for your changes to take effect in Active Directory. If you
select another zone group or end the ADEdit session before saving the
currently selected zone group, your changes will be lost.

Zone type

Classic and hierarchical

Syntax

set_zone_group_field field value

• • • • • •

ADEdit command reference 502

Abbreviation

szgf

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
field string Required. Specifies the name of the field that you want to set.

The possible values are:

gid: Sets the numeric identifier for the group (GID).

name: Sets the text string for the group name.

required: Specifies whether the zone group is
required. Set the value to 1, y, yes, or true if the
group is required in the zone or to 0, n, no, or false
if the group in not required in the zone. All other
values throw an exception.

If a group is required, users cannot remove the group
from their active set of groups.

You can also specify AIX extended attributes as the field to set
an extended attribute value for a group. Extended attribute
fields start with the aix. prefix. For example, the admin

extended attribute can be set by specifying aix.admin as the
field.

value Required. Specifies the value to assign to the specified field.
The data type depends on the field specified.

In some cases, you can assign a dash (-) to a field to unset the
field value. However, this is not supported for all fields or all
zone types.

• • • • • •

ADEdit Command Reference and Scripting Guide 503

Return value

This command returns nothing if it runs successfully.

Examples

The following example sets the current zone group’s UNIX group name to
managers.

set_zone_group_field name managers

If the current group is on AIX, you can set AIX group extended attributes and
values. For example, to identify the current group as an administrative group,
you can set the admin extended attribute:

set_zone_group_field aix.admin true

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select
zone groups:

get_zone_groups returns a Tcl list of the Active Directory names of all
zone groups in the current zone.

list_zone_groups lists to stdout the zone groups in the current zone.

new_zone_group creates a new zone group and stores it in memory.

select_zone_group retrieves a zone group from Active Directory and
stores it in memory.

After you have a zone group stored in memory, you can use the following
commands to work with that zone group:

delete_zone_group deletes the selected zone group from Active
Directory and from memory.

get_zone_group_field reads a field value from the current zone group.

save_zone_group saves the selected zone group with its current settings
to Active Directory.

• • • • • •

ADEdit command reference 504

set_zone_user_field

Use the set_zone_user_field command to set the value for a specified field
in the currently selected zone user stored in memory. The set_zone_user_

field command does not set a field value stored in Active Directory for this
zone user.

If you use ADEdit to change any field, you must save the zone user using the
save_zone_user command for your changes to take effect in Active Directory.
If you select another zone user or end the ADEdit session before saving the
currently selected zone user, your changes will be lost.

Zone type

Classic and hierarchical

Syntax

set_zone_user_field field value

Abbreviation

szuf

Options

This command takes no options.

Arguments

This command takes the following arguments:

• • • • • •

ADEdit Command Reference and Scripting Guide 505

Argument Type Description
field string Required. Specifies the name of the field y want set. The

possible values are:

uname: Sets the text string to use for the UNIX user
name.

If you are setting this field in a Service for UNIX (SFU)
zone, this name must be unique among all the SFU
zones. If you duplicate a user name that exists in another
SFU zone, that user will be moved to the currently
selected SFU zone when you save the zone user.

uid: Sets the numeric identifier for the user (UID).

gid: Sets the numeric identifier for the user’s
primary group (GID).

Set the value to 0x80000000 to indicate a private group
(the user’s UID is used as the GID).

gecos: Sets the text string to use for the user’s
GECOS field.

home: Sets the text string that specifies the user’s
home directory.

shell: Sets the text string that specifies the user’s
default shell type.

enabled: Specifies whether user is enabled or not.
This field is only valid in classic zones. Set the value
to 1, y, yes, or true if the user is enabled in the zone
or to 0, n, no, or false if the user is disabled in the
zone. All other values throw an exception.

You can also specify AIX extended attributes as the field to set
an extended attribute value for a zone user.

value Required. Specifies the value to assign to the specified field.
The data type depends on the field specified.

In some cases, you can assign a dash (-) to a field to unset the
field value. However, this is not supported for all fields or all
zone types.

• • • • • •

ADEdit command reference 506

Return value

This command returns nothing if it runs successfully.

Examples

The following example sets the current zone user’s UNIX user name to buzz:

set_zone_user_field uname buzz

This following example sets the current zone user’s primary GID to the same
value as the user’s UID:

set_zone_user_field gid 0x80000000

If the current zone user is on AIX, you can set extended attributes and values.
For example:

select_zone_user aixu1@acme.com
set_zone_user_field aix.ttys u1,u2,u3
set_zone_user_field aix.fsize 209715
set_zone_user_field aix.core 2097151
set_zone_user_field aix.cpu -1
save_zone_user

Related commands

Before you use this command, you must have a currently selected zone
stored in memory. The following commands enable you to view and select a
zone user:

get_zone_users returns a Tcl list of the Active Directory names of all zone
users in the current zone.

list_zone_users lists to stdout the zone users and their NSS data in the
current zone.

new_zone_user creates a new zone user and stores it in memory.

select_zone_user retrieves a zone user from Active Directory and stores
it in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 507

After you have a zone user stored in memory, you can use the following
commands to work with that zone user:

delete_zone_user deletes the selected zone user from Active Directory
and from memory.

get_zone_user_field reads a field value from the currently selected zone
user.

save_zone_user saves the selected zone user with its current settings to
Active Directory.

show

Use the show command to display the current context of ADEdit. The
command shows the domains ADEdit is bound to, the objects that are
currently selected, and all available data for each selected object as it is stored
in memory.

You should note that the command returns stored object data as it currently
exists in memory. If you use ADEdit commands to change objects, but have
not yet saved the data back to Active Directory, the information returned by
the show command will not match the object data stored in Active Directory.

Zone type

Not applicable

Syntax

show [all|bind|zone|user|computer|assignment|object|group|
pamright|dzcommand|nismap|role|license|rse|rscommand
localuser|localgroup]

Abbreviation

None.

• • • • • •

ADEdit command reference 508

Options

This command takes no options.

Arguments

This command takes the following argument of type string:

[all | user | bind | zone | user | computer | assignment |
object | group | pamright | dzcommand | nismap | role |
license | rse | rscommand| localuser| localgroup]

You can limit the information returned by specifying one of the following
arguments. If no argument is supplied, the default is all.

all returns the complete context of ADEdit—all of its current bindings
and all currently selected objects in memory.

bind returns ADEdit’s currently bound domains and the server bound in
each domain.

zone returns the currently selected zone.

user returns the currently selected user object.

computer returns the currently selected zone computer.

assignment returns the currently selected role assignment

object returns the currently selected Active Directory object.

group returns the currently selected zone group.

pamright returns the currently selected PAM application right.

dzcommand returns the currently selected UNIX command.

nismap returns the currently selected NIS map.

role returns the currently selected role.

license returns the forest list where valid licenses have been found (it
only reports the forests that have been queried).

rse returns the currently selected restricted shell environment.

rscommand returns the currently selected restricted shell command.

• • • • • •

ADEdit Command Reference and Scripting Guide 509

localuser returns the currently selected local user.

localgroup returns the currently selected local group.

Return value

This command returns domain bindings and/or object data, depending on the
supplied argument.

Examples

show

This example returns information all bound domains and selected objects
similar to this:

Bindings:
acme.com: calla.acme.com

Current zone:
CN=global,CN=Zones,CN=Centrify,CN=Program

Data,DC=acme,DC=com
Current nss user:

adam.avery@acme.com:adam:10001:10001:%
{u:samaccountname}:%{home}/%{user}:%{shell}:

Related commands

None.

sid_to_escaped_string

Use the sid_to_escaped_string command to specify a security identifier
(SID) and have it converted to an escaped string format that works in an LDAP
filter.

• • • • • •

ADEdit command reference 510

Zone type

Not applicable

Syntax

sid_to_escaped_string sid

Abbreviation

stes

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
sid string Required. Specifies a security identifier (SID).

Return value

This command returns an escaped string form of the supplied security
identifier.

Examples

sid_to_escaped_string S-1-5-21-2076040321-3326545908-
468068287-1157

• • • • • •

ADEdit Command Reference and Scripting Guide 511

This example returns an escaped string:

\01\05\00\00\00\00\00\05\15\00\00\00\81\dc\bd\7b\f4\0f\47\c
6\bf\27\e6\1b\85\04\00\00

Related commands

The following commands perform actions related to this command:

sid_to_uid converts an Active Directory security identifier to a user ID
(UID).

principal_from_sid searches Active Directory for an security identifier
and returns the security principal associated with the security identifier.

sid_to_uid

Use the sid_to_uid command to specify a security identifier (SID) of an Active
Directory user to look up the Active Directory user in Active Directory. This
command converts the user’s security identifier to a numeric identifier for the
user ID (the UID value). This conversion process is the same process used to
generate UIDs for Centrify Express users or when you use Auto Zone to
automatically generate UIDs for users.

Zone type

Not applicable

Syntax

sid_to_uid [-domainidmap] sid

Abbreviation

stu

• • • • • •

ADEdit command reference 512

Options

This command takes the following options:

Option Description
-
domainid
map

Optional. Specifies a domain ID mapping for the selected zone.
Before using this field, you must have a selected zone stored in
memory. This field is not supported for auto zones nor classic zones.

If the selected zone does not already have a domain ID mapping, the
UID is generated normally.

If the selected zone has a domain ID mapping already and the
domain to which this SID belongs exists in the specified domain
ID mapping, the UID is generated with the algorithm based on the
domain ID mapping.

If the selected zone has a domain ID mapping already but the domain
to which this SID belongs does not exist in the specified domain
ID mapping, the UID is generated normally.

For example:

sid_to_uid -domainidmap S-1-5-21-2076040321-
3326545908-468068287-1157

Arguments

This command takes the following argument:

Argument Type Description
sid string Required. Specifies a security identifier (SID).

Return value

This command returns a numeric user ID.

• • • • • •

ADEdit Command Reference and Scripting Guide 513

Examples

This example returns a unique UID for the user: 1874853888

Related commands

The following commands perform actions related to this command:

principal_from_sid searches Active Directory for an SID and returns the
security principal associated with the SID.

validate_license

Use the validate_license command to specify a path to the Centrify license
container and determine if there is a valid license. If there is a valid license, the
command stores an indicator in the ADEdit current context. If the command
does not find a valid license, it reports an error and exits.

ADEdit requires a valid license before a zone is created. The create_zone and
create_computer_role commands do an implicit search for a valid license. For
example, you can call create_zone and let it attempt to find the container and
validate the license. If that command fails to find a valid license, use
validate_license to validate the license container from an explicit path.

You can call the validate_license command multiple times. Successive
indicators take precedence. The command writes separate indicators for each
forest—that is, each license is valid for a forest. You can use the show license
command to see the list of forests that have been found to have a valid
license.

Do not call validate_license before you bind to the domain.

The validate_license context is deleted when ADEdit exits.

Zone type

Not applicable

• • • • • •

ADEdit command reference 514

Syntax

validate_license path

Abbreviation

vl

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
path string Required. Specifies the path is the license container’s

distinguished name (DN).

Return value

This command returns nothing.

Examples

validate_license “CN=Licenses,OU=Centrify,DC=acme,DC=com”

This example looks in the acme.com/Centrify/Licenses container for a valid
license.

• • • • • •

ADEdit Command Reference and Scripting Guide 515

Related commands

The following commands perform actions related to this command:

bind defines the current domain.

create_zone does in implicit validate license during execution.

show with the license option lists all forests that have a valid license.

• • • • • •

ADEdit command reference 516

ADEdit Tcl procedure library
reference

This chapter describes the commands in the ade_lib Tcl library. The
command descriptions are in alphabetical order. The syntax of each
command shows optional elements in [square brackets] and variables in
italics.

add_user_to_group

Use the add_user_to_group command to add an Active Directory user to an
Active Directory group.

Syntax

add_user_to_group user group

Options

This command takes no options.

Arguments

This command takes the following arguments:

• • • • • •

ADEdit Command Reference and Scripting Guide 517

Argument Type Description
user string Required. Specifies the user principal name (UPN) of the Active

Directory user to add.
group string Required. Specifies the UPN of the Active Directory group to

which to add the user.

Return value

This command returns nothing if it runs successfully.

Examples

add_user_to_group adam.avery@acme.com pubs@acme.com

Related Tcl library commands

The following commands perform actions related to this command:

create_aduser creates a new Active Directory user account and sets its
password.

create_adgroup creates a new Active Directory group account and
specifies its scope.

create_user creates a new zone user based on an existing Active
Directory user, assigns field values to the new user, and saves the new
user to Active Directory.

create_group creates a new zone group based on an existing Active
Directory group, assigns it a UNIX name and group ID, and saves the new
group to Active Directory.

remove_user_from_group removes an Active Directory user from an
Active Directory group.

• • • • • •

ADEdit Tcl procedure library reference 518

convert_msdate

Use the convert_msdate command to specify a Microsoft date value from an
Active Directory object field such as pwdLastSet and convert it into a human-
readable form.

Syntax

convert_msdate msdate

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
msdate string Required. Specifies the Microsoft date value for conversion.

Return value

This command returns the day of the week, the day of the month, the time of
day using a 24-hour clock, the time zone, and the year.

Examples

convert_msdate [get_object_field pwdLastSet]

This example returns converted into a format similar to this:

Thu Mar 24 14:40:26 PDT 2010

• • • • • •

ADEdit Command Reference and Scripting Guide 519

The unseen value returned by get_object_field pwdLastSet in this example
was 12914026824062500, which was converted to a human-readable time and
date.

Related Tcl library commands

None.

create_adgroup

Use the create_adgroup command to create a new Active Directory group
account with a specified distinguished name (DN), sAMAccountName, and
group scope.

Syntax

create_adgroup dn sam gscope

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
dn string Required. Specifies the distinguished name of the new group.
sam string Required. Specifies the sAMAccountName of the new group.
gscope string Required. Specifies the scope for the new group. The possible

values are:

global

• • • • • •

ADEdit Tcl procedure library reference 520

Argument Type Description
universal

local (for Domain local)

Return value

This command returns nothing if it runs successfully.

Examples

create_adgroup {CN=pubs,CN=Users,DC=acme,DC=com} pubs
global

This example creates the group pubs with a global scope in the Active
Directory Users container.

create_adgroup {CN=ApacheAdmins,OU=Unix
Groups,OU=Centrify,DC=acme,DC=com} pubs global

This example creates the group ApacheAdmins in the organizational unit Unix
Groups, which is in the organizational unit Centrify.

Related Tcl library commands

The following commands perform actions related to this command:

create_aduser creates a new Active Directory user account and sets its
password.

create_user creates a new zone user based on an existing Active
Directory user, assigns field values to the new user, and saves the new
user to Active Directory.

create_group creates a new zone group based on an existing Active
Directory group, assigns it a UNIX name and group ID, and saves the new
group to Active Directory.

add_user_to_group adds an Active Directory user to an Active Directory
group.

• • • • • •

ADEdit Command Reference and Scripting Guide 521

remove_user_from_group removes an Active Directory user from an
Active Directory group.

create_aduser

Use the create_aduser command to create a new Active Directory user
account with a specified distinguished name (DN), user principal name (UPN),
sAMAccountName, and password.

Syntax

create_aduser dn upn sam pw ?dname? ?gname? ?spn? ?gecos?

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
dn string Required. Specifies the distinguished name of the new user.

upn string Required. Specifies the user principal name of the new user.

sam string Required. Specifies the sAMAccountName of the new user.

pw string Required. Specifies the password for the new user.

dname string Optional. Specifies the displayName for the new user.

gname string Optional. Specifies the givenName for the new user.

spn string Optional. Specifies the servicePrincipalName for the new user.

gecos string Optional. Specifies the gecos for the new user.

• • • • • •

ADEdit Tcl procedure library reference 522

Return value

This command returns nothing if it runs successfully.

Examples

create_aduser {CN=ulysses urkham,CN=Users,DC=acme,DC=com}
ulysses.urkham@acme.com ulysses.urkham {5$6fEr2B}

This example creates a new Active Directory user account
ulysses.urkham@acme.com.

Related Tcl library commands

create_adgroup creates a new Active Directory group account and
specifies its scope.

create_user creates a new zone user based on an existing Active
Directory user, assigns field values to the new user, and saves the new
user to Active Directory.

create_group creates a new zone group based on an existing Active
Directory group, assigns it a UNIX name and group ID, and saves the new
group to Active Directory.

add_user_to_group adds an Active Directory user to an Active Directory
group.

remove_user_from_group removes an Active Directory user from an
Active Directory group.

create_assignment

Use the create_assignment command to create a new role assignment for a
user or group and save it to Active Directory.

• • • • • •

ADEdit Command Reference and Scripting Guide 523

Syntax

create_assignment upn role[/zonename] [from] [to]
[description]

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
upn string Required. Specifies the user principal name of the Active

Directory user or group to whom to assign the role.

role/
[zonename]

string Required. Specifies the name of the role to assign and
(optional) the name of the zone in which the role is assigned.

If the zone name is present, a slash(/) separates the role name
and the zone name. If the zone name isn’t present, the role
assignment occurs in the currently selected zone.

from string Optional. Specifies the start date and time for the role
assignment.

The start date and time can be expressed using the format:

yr-mon-day hour:min

to string Optional. Specifies the expiration date and time for the role is
assignment. The expiration date and time can be expressed
using the format:

yr-mon-day hour:min

description string Optional. Specifies a description of the role assignment.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit Tcl procedure library reference 524

Examples

create_assignment ulysses.urkham@acme.com admin/support 0 0
“Test assignment”

This example creates a role assignment for the rights defined in the role
“admin” from the “support” zone to the user Ulysses Urkham. The role
assignment is set to start immediately (0) and never expire (0) and has an
optional description.

create_assignment amy@example.demo mgr {2016-03-31 10:51}
{2016-03-31 12:51}

This example creates a role assignment for the rights defined in the role “mgr”
from the current zone to the user amy@example.com. This role assignment is
set to start at a specific time and expire two hours later and has no
description.

Related Tcl library commands

None.

create_dz_command

Use the create_dz_command command to create a new UNIX privileged
command in the currently selected zone.

Syntax

create_dz_command dzc cmd ?desc? ?form? ?dzdo_runas? ?dzsh_
runas? ?flags? ?pri? ?umask? ?path? ?selinux_role?
?selinux_type?

Options

This command takes no options.

• • • • • •

ADEdit Command Reference and Scripting Guide 525

Arguments

This command takes the following arguments:

Argument Type Description
name string Required. Specifies the name to assign to the new UNIX

command.

command string Required. Specifies the UNIX command string or strings. You
can use wild cards or a regular expression.

description string Optional. Specifies text describing the UNIX command.

form integer Optional. Specifies whether the command and path strings
use wild cards (0) or a regular expression (1).

dzdo_runas string Optional. Specifies the list of users and groups that can run
this command under dzdo (similar to sudo). Users can be
listed by user name or UID.

selinux_
role

string Optional. Specifies the SELinux role to use when constructing
a new security context for command execution.

Note that selinux_role is only supported on Red Hat
Enterprise Linux systems and effective only on systems with
SELinux enabled and joined to a hierarchical zone.

selinux_
type

string Optional. Specifies the SELinux type to use when constructing
a new security context for command execution.

Note that selinux_type is only supported on Red Hat
Enterprise Linux systems and effective only on systems with
SELinux enabled and joined to a hierarchical zone.

dzsh_runas string Optional. Specifies the list of users and groups that can run
this command in the restricted shell environment (dzsh).
Users can be listed by user name or UID.

flags integer Optional. Specifies an integer that defines a combination of
different properties for the command.

For more information about setting this field, see set_dzc_
field.

pri integer Optional. Specifies the command priority for the restricted
shell command object.

For more information about setting this field, see set_dzc_
field.

umask integer Optional. Specifies an integer that defines who can execute

• • • • • •

ADEdit Tcl procedure library reference 526

Argument Type Description
the command.

For more information about setting this field, see set_dzc_
field.

path string Optional. Specifies the path to the command’s location. You
can use wild cards, a regular expression, or one of the
following keywords:

USERPATH to set to the command path to the
equivalent of the Standard user path option.

SYSTEMPATH to set to the path to the equivalent of
the Standard system path option.

SYSTEMSEARCHPATH to set to the path to the
equivalent of the System search path option.

If you don’t specify this argument, the default is USERPATH.

Return value

This command returns nothing if it runs successfully.

Examples

create_dz_command testvi vi {Test UNIX command vi} {}
{sfapps:perez,cody} {} {16}

Related Tcl library commands

None.

create_group

Use the create_group command to create a new zone group for the currently
selected zone. This command creates the new group based on an existing

• • • • • •

ADEdit Command Reference and Scripting Guide 527

Active Directory group. It also assigns the new group a new UNIX profile that
includes the UNIX group name and the UNIX group numeric identifier (GID).

Syntax

create_group upn name gid ?req?

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
upn string Required. Specifies the user principal name of the Active

Directory group to use as the basis for the new zone group.

name string Required. Specifies the UNIX group name of the new zone
group.

For hierarchical zones only, specifying “-” unsets the name
value.

gid string Required. Specifies the UNIX group ID to assign to the new
zone group.

For hierarchical zones only, specifying “-” unsets the gid
value.

req string Optional. Specifies whether the zone group is required. Set the
value to 1, y, yes, or true if the group is required in the zone or
to 0, n, no, or false if the group in not required in the zone. All
other values throw an exception.

If a group is required, users cannot remove the group from
their active set of groups.

• • • • • •

ADEdit Tcl procedure library reference 528

Return value

This command returns nothing if it runs successfully.

Examples

create_group pubs@acme.com pubs 1094

Related Tcl library commands

The following commands perform actions related to this command:

create_aduser creates a new Active Directory user account and sets its
password.

create_adgroup creates a new Active Directory group account and
specifies its scope.

create_user creates a new zone user based on an existing Active
Directory user, assigns field values to the new user, and saves the new
user to Active Directory.

add_user_to_group adds an Active Directory user to an Active Directory
group.

remove_user_from_group removes an Active Directory user from an
Active Directory group.

create_nismap

Use the create_nismap command to create a new NIS map in the currently
selected zone.

Syntax

create_nismap map key:value comment

• • • • • •

ADEdit Command Reference and Scripting Guide 529

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
map string Required. Specifies the name of the new NIS map

key string Required. Specifies the key of the NIS map entry.

value string Required. Specifies the value of the NIS map entry.

comment string Required. Specifies the comment for the NIS map entry.

Return value

This command returns nothing if it runs successfully.

Examples

create_nismap animals {{cat:1 {The cat says "Mew\!".}}
{cow:1 {The cow says "Moo\!".}}}

Related Tcl library commands

None.

create_pam_app

Use the create_pam_app command to create a new PAM application access
right in the currently selected zone.

• • • • • •

ADEdit Tcl procedure library reference 530

Syntax

create_pam_app name application description

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
name string Required. Specifies the name to assign to the new PAM

application access right.

application string Required. Specifies the name of the PAM application that is
allowed to use the adclient PAM authentication service. The
name can be literal, or it can contain ? or * wild card characters
to specify multiple applications.

Note that in a classic zone, setting the application field
changes the name of the PAM application right. For example,
assume you create a new PAM application right in a classic
zone using a command like this:

create_pam_app myftp newftp “Sample PAM FTP
application”

The PAM application right itself will be renamed as newftp:

list_pam_apps

newftp : Sample PAM FTP application

Therefore, in a classic zone, you should always specify the
same string for the name and application arguments. In a
hierarchical zone, you can specify different strings for the
arguments.

description string Optional. Specifies the text describing the PAM application.

• • • • • •

ADEdit Command Reference and Scripting Guide 531

Return value

This command returns nothing if it runs successfully.

Examples

create_pam_app testvi vi {Test UNIX command vi}

Related Tcl library commands

None.

create_role

Use the create_role command to create a new role definition in the
currently selected zone.

Syntax

create_role name description sysrights pamrights cmdrights
allowlocal rsenv visible

Options

This command takes no options.

Arguments

This command takes the following arguments:

• • • • • •

ADEdit Tcl procedure library reference 532

Argument Type Description
name string Required. Specifies the name to assign to the new role.

description string Specifies the text string that describes the role.

sysrights integer Specifies the system rights granted to the role. This value is
an integer that represents a combination of binary flags,
one for each system right. This field is not applicable in
classic zones.

pamrights
[/zonename]

string Specifies the PAM application rights to add to the currently
selected role.

If the PAM application right that you want to add is defined
in the current zone, the zonename argument is optional. If
the PAM application right is defined in a zone other than
the currently selected zone, the zonename argument is
required to identify the specific PAM application right to
add.

cmdrights
[/zonename]

string Specifies the UNIX command rights to add to the currently
selected role.

If the UNIX command right that you want to add is defined
in the current zone, the zonename argument is optional. If
the UNIX command right is defined in a zone other than the
currently selected zone, the zonename argument is
required to identify the specific UNIX command right to
add.

allowlocal Boolean Specifies whether local users can be assigned to the role. If
this argument is specified, local users can be assigned to
the role.

This argument is only applicable if the zone is a hierarchical
zone.

rsenv string Specifies a restricted shell environment for the role you are
creating.

This argument is only applicable if the zone is a classic
zone.

visible Boolean Specifies whether the account profiles for Active Directory
users in the role are visible on computers in the zone.

This argument is only applicable if the zone is a hierarchical
zone.

• • • • • •

ADEdit Command Reference and Scripting Guide 533

Return value

This command returns nothing if it runs successfully.

Examples

create_role dba {Database admins - US} 11 {{oracle} {ftp}}
{{testvi} {ora-stp}}

Related Tcl library commands

None.

create_rs_command

Use the create_rs_command command to create a new restricted shell
command for the currently selected restricted shell environment.

Syntax

create_rs_command rsc_name cmd description form dzsh_runas
flags pri umask path

Options

This command takes no options.

Arguments

This command takes the following arguments:

• • • • • •

ADEdit Tcl procedure library reference 534

Argument Type Description
rsc_name string Required. Specifies the name of the restricted shell

command.

cmd string Required. Specifies the restricted shell command string or
strings. You can use wild cards or a regular expression.

description string Optional. Specifies the text describing the restricted shell
command.

form integer Optional. Indicates whether the cmd and path strings use wild
cards (0) or a regular expression (1).

dzsh_runas string Optional. Specifies the list of users and groups that can run
this command in a restricted shell environment (dzsh). Users
can be listed by user name or UID.

flags string Optional. Specifies an integer that specifies a combination of
different properties for the command.

For more information about setting this field, see set_rsc_
field.

pri integer Optional. Specifies the command priority for the restricted
shell command object.

For more information about setting this field, see set_rsc_
field.

umask integer Optional. Specifies an integer that defines who can execute
the command.

For more information about setting this field, see set_rsc_
field.

path string Optional. Specifies the path to the restricted command. You
can use wild cards, a regular expression, or one of the
following keywords:

USERPATH to set to the command path to the
equivalent of the Standard user path option.

SYSTEMPATH to set to the path to the equivalent of
the Standard system path option.

SYSTEMSEARCHPATH to set to the path to the
equivalent of the System search path option.

If you don’t specify this argument, the default is USERPATH.

• • • • • •

ADEdit Command Reference and Scripting Guide 535

Return value

This command returns nothing if it runs successfully.

Examples

create_rs_command test_id id {Sample restricted command
description}

Related Tcl library commands

The following commands perform actions related to this command:

create_rs_env creates a new restricted shell environment.

create_rs_env

Use the create_rs_env command to create a new restricted shell
environment for the currently selected zone.

Syntax

create_rs_env rse_name rse_description

Options

This command takes no options.

Arguments

This command takes the following arguments:

• • • • • •

ADEdit Tcl procedure library reference 536

Argument Type Description
rse_name string Required. Specifies the name of the new restricted shell

environment.

rse_
description

string Optional. Specifies the description for the new restricted shell
environment.

Return value

This command returns nothing if it runs successfully.

Examples

create_rs_env restrictedenv “This is a restricted shell
environment”

Related Tcl library commands

The following commands perform actions related to this command:

create_rs_command creates a new restricted shell command.

create_user

Use the create_user command to create a new zone user for the currently
selected zone. This command creates the new user based on an existing
Active Directory user. It also assigns the new user a new UNIX profile that
includes the user name, user ID, primary group ID, GECOS data, home
directory, shell type, and role (or in classic zones whether the user is enabled
or disabled).

You can assign the new user a role in a non-classic zone or you can enable or
disable the new user in a classic zone. In a non-classic zone, create_user uses
whatever role you specify to create a new role assignment object that links the
new zone user to the specified role.

• • • • • •

ADEdit Command Reference and Scripting Guide 537

Syntax

create_user UPN uname uid gid gecos home shell role

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
UPN string Required. Specifies the user principal name of the Active

Directory user to use as the basis for the new zone user.

uname string Required. Specifies the user name of the new zone user.

For hierarchical zones, you can specify a dash (-) for this
argument if you don’t want to set the user name.

uid string Required. Specifies the user ID for the new zone user.

For hierarchical zones, you can specify a dash (-) for this
argument if you don’t want to set the user ID.

gid string Required. Specifies the group ID for the new zone user.

For hierarchical zones, you can specify a dash (-) for this
argument if you don’t want to set the group ID.

gecos string Required. Specifies the GECOS value (new user account
information) for the new zone user.

For hierarchical zones, you can specify a dash (-) for this
argument if you don’t want to set the GECOS value.

You can’t set the GECOS value if the currently selected zone
is a classic zone.

home string Required. Specifies the home directory for the new zone
user.

For hierarchical zones, you can specify a dash (-) for this
argument if you don’t want to set the home directory.

• • • • • •

ADEdit Tcl procedure library reference 538

Argument Type Description
shell string Required. Specifies the shell type for the new zone user.

For hierarchical zones, you can specify a dash (-) for this
argument if you don’t want to set the shell type.

role string
or
Boolean
value

Required.

For classic zones, this argument determines whether to
enable or disable the new zone user. A value of 1, Y, or y
enables the user. Any other value disables the user.

For hierarchical zones, this argument identifies the role to
assign to the new zone user. You can specify a dash (-) for
this argument if you don’t want to set the role. However, a
role must be assigned before the new zone user has access
to computers in hierarchical zones.

Return value

This command returns nothing if it runs successfully.

Examples

create_user ulysses.urkham@acme.com ulysses 1005 - - %
{home}/%{user} %{shell} -

This example creates a zone user “ulysses” based on the Active Directory user
ulysses.urkham@acme.com. It sets a UID, does not set a GID or GECOS value
by using dashes, sets home and shell values, and does not set a role value
(specified by using a dash).

Related Tcl library commands

create_aduser creates a new Active Directory user account and sets its
password.

create_adgroup creates a new Active Directory group account and
specifies its scope.

• • • • • •

ADEdit Command Reference and Scripting Guide 539

create_group creates a new zone group based on an existing Active
Directory group, assigns it a UNIX name and group ID, and saves the new
group to Active Directory.

add_user_to_group adds an Active Directory user to an Active Directory
group.

remove_user_from_group removes an Active Directory user from an
Active Directory group.

decode_timebox

Use the decode_timebox command to convert an internal timebox value that
defines when a role is enabled or disabled into a format that can be evaluated.
The command converts the internal hexadecimal value for a role timebox to a
hexadecimal timebox value format as described in Timebox value format

The command returns a 168-bit value in hexadecimal format that delineates
the hours of the week from midnight Sunday to 11 PM Saturday in order from
most-significant bit to least-significant bit. If a bit is set to 1, its corresponding
hour is enabled for the role. If set to 0, its corresponding hour is disabled.

This command is useful for deciphering the value returned by the get_role_
field for the timebox field.

Syntax

decode_timebox strTimeBox

Options

This command takes no options.

Arguments

This command takes the following arguments:

• • • • • •

ADEdit Tcl procedure library reference 540

Argument Type Description
strTimeBox hex A 42-digit hexadecimal timebox value. A value of zero disables

all hours of the week. A value of
FF

enables all hours of the week.

Return value

This command returns a decoded hexadecimal value that is the timebox value
for a role.

Examples

>select_role test1
>get_role_field timebox
FFF7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
>package require ade_lib
1.0
>decode_timebox [grf timebox]

This example returns the decoded 42 hexadecimal that indicates the role is
disabled from midnight to one on Sunday:

7FFF

Related Tcl library commands

The following commands perform actions related to this command:

encode_timebox converts a readable timebox value to an internal
timebox format.

modify_timebox defines an hour of the week and enables or disables
that hour in the timebox value.

• • • • • •

ADEdit Command Reference and Scripting Guide 541

encode_timebox

Use the encode_timebox command to convert a human-readable timebox
value that defines the when a role is enabled or disabled to an internal
timebox value format.

The command converts the hexadecimal timebox value format described in
Timebox value format to the internal hexadecimal value for a role. The
command accepts a 168-bit value in hexadecimal format that delineates the
hours of the week from midnight Sunday to 11 PM Saturday from most-
significant bit to least-significant bit. If a bit is set to 1, its corresponding hour
is enabled for the role. If set to 0, its corresponding hour is disabled.

This command is useful for setting the timebox field with the set_role_field
command.

Syntax

encode_timebox strTimeBox

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
strTimeBox hex A 42-digit hexadecimal timebox value. A value of zero disables

all hours of the week. A value of
FF

enables all hours of the week.

• • • • • •

ADEdit Tcl procedure library reference 542

Return value

This command returns a decoded hexadecimal value that is the timebox value
for a role.

Examples

>package require ade_lib
>set tb 7FFF
>encode_timebox $tb

This example returns the encoded 42 hexadecimal that indicates the role is
disabled from midnight to one on Sunday:

FFF7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Related ade_lib Tcl library commands

The following commands perform actions related to this command:

decode_timebox converts an internal timebox value to a decipherable
format.

modify_timebox defines an hour of the week and enables or disables
that hour in the timebox value.

explain_groupType

Use the explain_groupType command to convert a groupType value from an
Active Directory object field into human-readable form.

Syntax

explain_groupType gt

• • • • • •

ADEdit Command Reference and Scripting Guide 543

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
gt string Required. A groupType value for conversion.

Return value

This command returns a hexadecimal version of the supplied value followed
by the names of any flags that are set in the value.

Examples

explain_groupType [get_object_field groupType]

This example returns:

80000004 DOMAIN_LOCALSECURITY

The unseen value returned by get_object_field groupType in this example
was -2147483644, which was converted to the hexadecimal value 80000004

and the name of the set flag DOMAIN_LOCALSECURITY.

Related Tcl library commands

The following commands perform actions related to this command:

explain_trustAttributes converts a trustAttributes value from an Active
Directory object into human-readable form.

explain_trustDirection converts a trustDirection value from an Active
Directory object into human-readable form.

• • • • • •

ADEdit Tcl procedure library reference 544

explain_userAccountControl converts a userAccountControl value from
an Active Directory object into human-readable form.

explain_ptype

Use the explain_ptype command to translate the account type for a role
assignment into a descriptive text string.

Syntax

explain_ptype pt

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
pt string Required. Specifies the ptype value returned for a role

assignment that you want to convert to a text string.

Return value

This command returns a text string that describes the type of account
associated with a role assignment.

Examples

select_role_assignment "lulu@acme.test/UNIX Login"
get_role_assignment_field ptype

• • • • • •

ADEdit Command Reference and Scripting Guide 545

a
explain_ptype a

This example returns:

All AD users

The following table summarizes the descriptive names for different account
types that can be associated with a role assignment:

Account type
Local UNIX user #

Local UNIX group %

Local Windows User $

Local Windows Group :

All AD users a

All Unix users x

All Windows users w

explain_trustAttributes

Use the explain_trustAttributes command to convert a trustAttributes
value from an Active Directory object field into human-readable form.

Syntax

explain_trustAttributes ta

Options

This command takes no options.

Arguments

This command takes the following argument:

• • • • • •

ADEdit Tcl procedure library reference 546

Argument Type Description
ta string Required. A trustAttributes value for conversion.

Return value

This command returns a hexadecimal version of the supplied value followed
by the names of any flags that are set in the value.

Examples

explain_trustAttributes [get_object_field trustAttributes]

This example returns:

8 FOREST_TRANSITIVE

The unseen value returned by get_object_field trustAttributes in this
example was 8, which was converted to the hexadecimal value 8 and the name
of the set flag DOMAIN_LOCALSECURITY.

Related Tcl library commands

The following commands perform actions related to this command:

explain_groupType converts a groupType value from an Active Directory
object into human-readable form.

explain_trustDirection converts a trustDirection value from an Active
Directory object into human-readable form.

explain_userAccountControl converts a userAccountControl value from
an Active Directory object into human-readable form.

explain_trustDirection

Use the explain_trustDirection command to convert a trustDirection value
from an Active Directory object field into human-readable form.

• • • • • •

ADEdit Command Reference and Scripting Guide 547

Syntax

explain_trustDirection td

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
td string Required. A trustDirection value for conversion.

Return value

This command returns the English version of the trust direction specified by
the trustDirection value.

Examples

explain_trustDirection [get_object_field trustDirection]

This example returns:

two-way

Related Tcl library commands

The following commands perform actions related to this command:

explain_groupType converts a groupType value from an Active Directory
object into human-readable form.

• • • • • •

ADEdit Tcl procedure library reference 548

explain_trustAttributes converts a trustAttributes value from an Active
Directory object into human-readable form.

explain_userAccountControl converts a userAccountControl value from
an Active Directory object into human-readable form.

explain_userAccountControl

Use the explain_userAccountControl command to convert a
userAccountControl value from an Active Directory object field into a human-
readable form.

Syntax

explain_userAccountControl uac

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
uac string Required. A userAccountControl value for conversion.

Return value

This command returns a hexadecimal version of the supplied value followed
by the names of any flags that are set in the value.

• • • • • •

ADEdit Command Reference and Scripting Guide 549

Examples

explain_userAccountControl [get_object_field
userAccountControl]

returns:

10200 ADS_UF_NORMAL_ACCOUNT ADS_UF_DONT_EXPIRE_PASSWD

The unseen value returned by get_object_field userAccountControl in
this example was 66048, which was converted to the hexadecimal value 10200

and the name of the set flags ADS_UF_NORMAL_ACCOUNT and ADS_UF_DONT_

EXPIRE_PASSWD.

Related Tcl library commands

The following commands perform actions related to this command:

explain_groupType converts a groupType value from an Active Directory
object into human-readable form.

explain_trustAttributes converts a trustAttributes value from an Active
Directory object into human-readable form.

explain_trustDirection converts a trustDirection value from an Active
Directory object into human-readable form.

get_all_zone_users

Use the get_all_zone_users command to check Active Directory and return
a list of zone users defined within the specified zone and all of its parent
zones. If executed in a script, this command does not output its list to stdout,
and no output appears in the shell where the script is executed.

Note that this command does not use the currently selected zone to find its
list of users. It uses instead the zone specified as an argument for the
command. It ignores the currently selected zone. The selected zone remains
the selected zone after the command executes.

• • • • • •

ADEdit Tcl procedure library reference 550

Syntax

get_all_zone_users [-upn] zone_DN

Abbreviation

None.

Options

This command takes the following option:

Option Type Description
-upn string Return user names in the Tcl list as universal principal names

(UPNs).

Arguments

This command takes the following argument:

Argument Type Description
zone_DN string Required. The distinguished name (DN) of the zone for which

to return users.

Return value

This command returns a Tcl list of zone users defined in the currently selected
zone and all of its parent zones. Each entry in the list is in the format
sAMAccountName@domain. If a zone user is an orphan user (its
corresponding Active Directory user no longer exists), the user is listed by its
security identifier (SID) instead of the sAMAccountName.

If the -upn option is present, each entry in the returned Tcl list is a universal
principal name (UPN).

• • • • • •

ADEdit Command Reference and Scripting Guide 551

Examples

get_all_zone_users engineering

The example returns the list of zone users:

adam.avery@acme.com brenda.butler@acme.com
chris.carter@acme.com dave.douglas@acme.com
elliot.evans@acme.com

Related Tcl library commands

The following commands perform actions related to this command:

create_user creates a new zone user and user profile based on a
specified Active Directory user.

create_group creates a new zone group and group profile based on a
specified Active Directory group.

get_effective_groups returns a Tcl list of groups to which a specified user
belongs.

get_effective_groups

Use the get_effective_groups command to return the list of effective
groups from current zone up the zone hierarchy. Only groups who have a
complete profile—whether defined in the current zone or inherited from a
parent zone—are included.

The command supports hierarchical zone and classic zones. For classic zones,
the command starts from current zone. For hierarchical zones, you can start
the search for effective groups at the computer level by specifying the -

hostname option.

You can use the adinfo command to return the computer name.

Syntax

get_effective_groups [-hostname computer_name]

• • • • • •

ADEdit Tcl procedure library reference 552

Options

This command takes the following option:

Option Type Description
-
hostname

string Specifies the name of the computer to start the search at the
computer or computer role level if you run the command in a
hierarchical zone with computer-level overrides or computer
roles.

If you don’t specify this option, the search starts in the current
zone and computer roles are ignored.

Return value

This command returns a Tcl list of groups with complete profiles in the
currently selected zone and all of its parent zones.

Example

get_effective_groups -hostname centos7.ajax.com

The example returns the list of effective groups starting at the computer level
for the computer named centos7.ajax.com.

get_effective_users

Use the get_effective_users command to return the list of effective users
from current zone up the zone hierarchy. Only users who have a complete
profile—whether defined in the current zone or inherited from a parent
zone—are included. Similarly, only users who have a role assignment in the
current zone or inherited from a parent zone are included.

The command supports hierarchical zone and classic zones. For classic zones,
the command starts from current zone. For hierarchical zones, you can start
the search for effective users at the computer level by specifying the -

hostname option.

• • • • • •

ADEdit Command Reference and Scripting Guide 553

Syntax

get_effective_users [-hostname computer_name]

Options

This command takes the following option:

Option Type Description
-
hostname

string Specifies the name of the computer to start the search at the
computer or computer role level if you run the command in a
hierarchical zone with computer-level overrides or computer
roles.

If you don’t specify this option, the search starts in the current
zone and computer roles are ignored.

Return value

This command returns a Tcl list of users with complete profiles and at least
one role assignment in the currently selected zone and all of its parent zones.

Example

get_effective_users -hostname centos7.ajax.com

The example returns the list of effective users starting at the computer level
for the computer named centos7.ajax.com.

get_user_groups

Use the get_user_groups command to check Active Directory for a specified
user and return a list of the groups to which the user belongs. If executed in a
script, this command does not output its list to stdout, and no output
appears in the shell where the script is executed.

• • • • • •

ADEdit Tcl procedure library reference 554

Syntax

get_user_groups [-dn] [-z] user_DN|user_UPN

Abbreviation

None.

Options

This command takes the following options:

Option Description
-dn Return groups in the Tcl list as distinguished names (DNs) instead of user

principal names (UPNs).

-z Restricts the Tcl list of groups to groups that belong to the current zone.

Arguments

This command takes the following argument:

Argument Type Description
user_
DN|user_
UPN

string Required. The user whose groups to return. This argument may
specify the user with a distinguished name (DN) or a user
principal name (UPN).

Return value

This command used without options returns a Tcl list of all groups listed in
Active Directory to which the specified user belongs. Each entry in the list is
the user principal name (UPN) of a group that you can use to look up that
group.

If the -dn option is set, the Tcl list uses distinguished names (DNs) for groups.

• • • • • •

ADEdit Command Reference and Scripting Guide 555

If the -z option is set, the Tcl list is restricted to groups that belong to the
currently selected zone.

Note that the command will not return groups for domains that aren’t
currently bound to ADEdit. If the command finds one or more groups outside
of the currently bound domains, it will return a “no binding” message for each
unbound domain in which it finds a user’s group.

Examples

get_user_groups fred.forth@acme.com

This example returns a list of groups:

poweradmins@acme.com auditors@acme.com

Related Tcl library commands

The following commands perform actions related to this command:

create_group creates a new zone group and group profile based on a
specified Active Directory group.

create_user creates a new zone user and user profile based on a
specified Active Directory user.

get_all_zone_users returns a Tcl list of zone users for the specified zone
and all of its parent zones.

get_user_role_assignments

Use the get_user_role_assignments command to retrieve all of the role
assignments in the current zone for a specified user. This command returns
all of the role assignments from the groups to which the user belongs and the
role assignments assigned directly to the user account.

The command checks Active Directory for the user you specify, identifies the
groups that the user is a member of, then returns all the role assignments for
the list of groups the user is a member and that have been specifically

• • • • • •

ADEdit Tcl procedure library reference 556

assigned to the user account, including any user role assignments made in
computer roles for the currently selected zone.

Syntax

get_user_role_assignments [-visible] [-hostname hostname]
user_DN

Abbreviation

None.

Options

This command takes the following option:

Option Description
-visible Specifies that you want to return only visible role assignments in the

zone. Use this option to return role assignments for the roles that are
identified as visible. This option is only applicable in hierarchical zones.

-
hostname

Specifies the computer name to search for role assignments to the user
in computer roles. If you set this option, the command checks for
computer role assignments in the currently selected zone.

Arguments

This command takes the following argument:

Argument Type Description
user_DN string Required. Specifies the user whose role assignments you want

to return. You can use this argument to specify the
distinguished name (DN) for a user or a group.

• • • • • •

ADEdit Command Reference and Scripting Guide 557

Return value

This command returns a list of all role assignments for the specified Active
Directory user in the currently selected zone.

Note that the command does not return role assignments for all zones where
the user might be assigned a role.

Examples

select_zone
“cn=northamerica,cn=zones,ou=centrify,dc=pistolas,dc=org”

get_user_role_assignments
“cn=amy.adams,cn=users,dc=pistolas,dc=org”

This example returns a list of groups:

{amy.adams@pistolas.org/UNIX Login/northamerica}
{adm-sf@pistolas.org/Root/sanfrancisco}
{apps@pistolas.org/demos/seattle}

Related Tcl library commands

The following commands perform actions related to this command:

get_all_zone_users returns a Tcl list of zone users for the specified zone
and all of its parent zones.

get_effective_groups returns a list of the groups to which the user
belongs.

list_zones

Use the list_zones command to list the zones within a specified domain
along with information about each zone. If executed in a script, this command
outputs its list to stdout so that the output appears in the shell where the
script is executed. The command does not return a Tcl list back to the
executing script. Use the ADEdit command get_zones to return a Tcl list.

• • • • • •

ADEdit Tcl procedure library reference 558

Syntax

list_zones domain

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
domain string Required. The name of the domain in which to list zones.

Return value

This command returns a list to stdout of the zones within the specified
domain. Each entry in the list contains:

The zone’s distinguished name (DN)

The zone type: tree (supported in Centrify Server Suite 2012 or later),
classic3 or classic4

The schema used in the zone

Each entry component is separated from the next by a colon (:).

Examples

list_zones

This example returns a list of zones similar to this:

{CN=default,CN=Zones,CN=Centrify,DC=acme,DC=com} : classic4
: std
{CN=cz1,CN=Zones,CN=Centrify,DC=acme,DC=com} : tree : std

• • • • • •

ADEdit Command Reference and Scripting Guide 559

{CN=cz2,CN=Zones,CN=Centrify,DC=acme,DC=com} : tree : std
{CN=global,CN=Zones,CN=Centrify,DC=acme,DC=com} : tree :
rfc

Related Tcl library commands

The following commands perform actions related to this command:

create_assignment creates a new role assignment and saves it to Active
Directory.

precreate_computer creates a zone profile and, if necessary, a new
Active Directory computer account.

lmerge

Use the lmerge command to merge and sort the specified lists. You specify
the lists to merge as arguments. You must enclose the list commands you
want to merge in square brackets.

Syntax

lmerge [list1] [list2] [list[...]]

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
[list1] string Specifies the list command that return the information you

want to include first in the merged results.

• • • • • •

ADEdit Tcl procedure library reference 560

Argument Type Description
[list2) string Specifies the list command that return the information you

want to include second in the merged results.

[list[...]] string Specifies any additional list commands that return information
you want to include in the merged results.

Return value

This command returns nothing if it runs successfully.

Examples

lmerge [list_zone_users] [list_zone_computers] [list_roles]

This example returns a merged list of zone users, zone computers, and zone
roles similar to this:

fred@pistolas.org:fred:580398:648:%{u:displayName}:%
{home}/%{user}:%{shell}:
lane@pistolas.org:lane:580397:648:%{u:displayName}:%
{home}/%{user}:%{shell}:
maya@pistolas.org:maya:580320:648:%{u:displayName}:%
{home}/%{user}:%{shell}:
ubu1$@pistolas.org: cpus(1) agentVersion(CentrifyDC 5.2.0):
ubu1.pistolas.org
nic3$@pistolas.org: cpus(2) agentVersion(CentrifyDC 5.2.0):
nic3.pistolas.org
Rescue - always permit login
listed
UNIX Login
UnixAdminRights
Windows Login

You can specify the list arguments using full command names or
abbreviations. For example:

lmerge [lszc] [lspa]
ubu1$@pistolas.org: cpus(1) agentVersion(CentrifyDC 5.2.0):
ubu1.pistolas.org
nic3$@pistolas.org: cpus(2) agentVersion(CentrifyDC 5.2.0):
nic3.pistolas.org

• • • • • •

ADEdit Command Reference and Scripting Guide 561

dzssh-all/Headquarters : dzssh-* : All of ssh services
login-all/Headquarters : * : Predefined global PAM
permission. Do not delete.

Related Tcl library commands

None.

modify_timebox

Use the modify_timebox command to modify a timebox value that defines the
hours of a week when a role is enabled or disabled. The command defines an
hour of the week and then enables or disables that hour in the timebox value.
This command is very useful in the set_role_field ADEdit command when
setting the timebox field.

Execute this command multiple times on a timebox value to set more than
one hour in the value.

For more information about the timebox value format, read the Timebox
value format.

Syntax

modify_timebox strTimeBox day hour avail

Options

This command takes no options.

Arguments

This command takes the following arguments:

• • • • • •

ADEdit Tcl procedure library reference 562

Argument Type Description
strTimeBox hex A 42-digit hexadecimal timebox value. A value of zero disables

all hours of the week. A value of
FF

enables all hours of the week.

day integer Required. The day of the week when the hour occurs.
0=Sunday, 1=Monday, and so on to 6=Saturday.

hour integer Required. The hour of the day to enable or disable. Takes a
value from 0 to 23. 0 is from midnight to 1 AM, 1 is from 1 AM
to 2 AM, and so on to 23, which is from 11 PM to midnight.

avail integer Required. Whether to enable or disable the specified hour.
0=disable; all other values=enable.

Return value

This command returns a hexadecimal value that is the timebox value after
enabling or disabling the specified hour of the week.

Examples

set tb 00

set tb [modify_timebox $tb 6 23 1]

This example returns the modified timebox value:

8000

Related Tcl library commands

The following commands perform actions related to this command:

decode_timebox converts an internal timebox value to a decipherable
format.

encode_timebox converts a readable timebox value to an internal
timebox format.

• • • • • •

ADEdit Command Reference and Scripting Guide 563

precreate_computer

Use the precreate_computer command to create a zone profile for a
computer in Active Directory before using the adjoin command to join the
domain. The zone profile—a serviceConnectionPoint (scp) object—is usually
created by the adjoin command when a computer joins the domain. In some
cases, however, creating the zone profile before joining is useful. For example,
preparing the computer object before joining enables you to check that you
have user profiles and role assignments correctly defined before you join
UNIX computers to zones. Verifying this information before the join operation
helps to ensure a smooth migration without disrupting users’ access to files
or applications.

The zone profile is part of an Active Directory computer object. If an Active
Directory computer object doesn’t exist, precreate_computer can create one
and then add the zone profile to the new Active Directory computer object.
The zone profile is created in ADEdit’s currently selected zone. You can also
use the precreate_computer command to specify a container where Active
Directory will store the new Active Directory computer object.

You can use the precreate_computer command to create a service
connection point for a new or existing Active Directory computer object. You
can also use the command to create a computer-specific zone for machine-
level zone overrides (in essence a one-computer zone) for the precreated
computer. You should note that performing these tasks requires access to
the global catalog by default. You can intentionally skip the global catalog
search if you know the service connection point you are creating is unique in
the forest. However, skipping the global catalog search might prevent you
from joining the computer to the domain if there is a conflict.

The precreate_computer command also sets the Active Directory computer
object’s password and permissions when creating a zone profile. The
password is the computer’s host name in lower case. The permissions the
computer object has are:

Read and Write permissions to the operatingSystemServicePack,
operatingSystem, and operatingVersion attributes of the computer
object.

Read permission for the userAccountControl attribute of the computer
object.

• • • • • •

ADEdit Tcl procedure library reference 564

Validate write to the servicePrincipalName and dNSHostName

attributes.

You can use precreate_computer to specify a DNS name for the precreated
computer and one or more trustees for the precreated computer. Each
trustee can be either a user or a group, and has the rights needed to join the
computer to the precreated computer account using adjoin.

Use the precreate_computer command option, enctype, to specify
encryption types.

The precreate_computer command is similar to using adjoin -precreate,
but provides more options and flexibility. You can also precreate computer
accounts using Access Manager. For more information about precreating
computer accounts, See the Administrator’s Guide for Linux and UNIX.

Syntax

precreate_computer samaccount@domain[-ad] [-scp] [-czone]
[-all] [-container rdn]
[-dnsname dnsname] [licensetype type] [-trustee upn[-
trustee upn] ...] [-nogc]
[-stype spn [-stype spn] ...] [-enctype type [-enctype
type] ...]

Options

This command takes the following options:

Option Description
-ad Creates an Active Directory computer object. precreate_computer won’t

create an Active Directory computer object if it already exists for the
computer specified by the argument upn. Note that if no options
specify Active Directory computer object creation and no Active
Directory computer object already exists, precreate_computer will
fail.

-all Creates an Active Directory computer object (if one doesn’t exist
already), a service connection point for the computer object, and a
computer zone for the computer object: in essence all of the previous

• • • • • •

ADEdit Command Reference and Scripting Guide 565

Option Description
three options combined.

-container Stores the new Active Directory computer object (if created) in the
Active Directory container specified by rdn, which is the relative
distinguished name (RDN) of the container. The root of the specified
Active Directory container is the distinguished name (DN) of the current
domain. precreate_computer appends the RDN to the root DN to come
up with the container DN.

-czone Creates a computer zone for the computer object.

-dnsname Sets the DNS name for the computer account to the provided DNS
name.

If this option isn’t present, the precreate_computer command
automatically sets the DNS name for the computer account. It derives
the DNS name from the computer’s sAMAccount name and the domain
name.

-enctype Set the msDS encryption types permitted in precreate _computer

command. Default is 31. Options are:

aes256-cts-hmac-sha1-96, aes256-cts

aes128-cts-hmac-sha1-96, aes128-cts

arcfour-hmac, rc4-hmac, arcfour-hmac-md5

des-cbc-md5, des

des-cbc-crc

-
licensetype

Specifies the type of license a computer uses. The valid values are

server

workstation

-nogc Allows you to create the computer account without binding to a global
catalog domain controller. You should only use this option if you know
the computer scp object does not exist in the domain.

-scp Creates a service connection point for the Active Directory computer
object.

-stype Specifies the service principal types to create for a precreated computer
account. You can specify multiple -stype options, with each specifying
a different service principal type.

If you don’t specify this option, the precreate_computer command

• • • • • •

ADEdit Tcl procedure library reference 566

Option Description
automatically creates the several default service principal names for the
following service principal types:

ipp

afpserver

nfs

cifs

ftp

http

host

For each type of service, the precreate_computer command
specifies two service principal names in the form of
serviceName/computerName and
serviceName/computerName.domain.com. For example:

ftp/rhel6

ftp/rhel6.acme.com

If you specify one or more -stype options, only the service principal
names for those service types are created for the precreated computer
account.

-trustee Gives the user or group specified by the upn argument permission to
join a computer to the precreated computer account. You can specify
multiple -trustee options, with each specifying a different user or
group, to give multiple users and groups permission to join a
precreated computer to a zone.

Arguments

This command takes the following argument:

Argument Type Description
samaccount@domain string Required. Specifies the name of the computer

account and the domain to join. The computer name
is the sAMAccountName for the account in the form
of computer$.

• • • • • •

ADEdit Command Reference and Scripting Guide 567

Argument Type Description
For example:

engserv$@acme.com

Return value

This command returns nothing if it runs successfully.

Examples

precreate_computer redhat$@acme.com -trustee
adam.avery@acme.com
-trustee martin.moore@acme.com -enctype arcfour-hmac

This example precreates a zone profile in the currently selected zone for the
computer “redhat$@acme.com”, and specifies as trustees the Active Directory
users Adam Avery and Martin Moore.

Because the example does not include the -stype option, this example also
automatically creates the following default service principal names for
services on the computer:

ipp/redhat and ipp/redhat.acme.com

afpserver/redhat and afpserver/redhat.acme.com

nfs/redhat and nfs/redhat.acme.com

cifs/redhat and cifs/redhat.acme.com

ftp/redhat and ftp/redhat.acme.com

http/redhat and http/redhat.acme.com

host/redhat and host/redhat.acme.com

Related Tcl library commands

The following commands perform actions related to this command:

• • • • • •

ADEdit Tcl procedure library reference 568

list_zones returns a list of zones in a specified domain to stdout.

create_assignment creates a new role assignment and saves it to Active
Directory.

remove_user_from_group

Use the remove_user_from_group command to remove an Active Directory
user from an Active Directory group.

Syntax

remove_user_from_group user group

Options

This command takes no options.

Arguments

This command takes the following arguments:

Argument Type Description
user string Required. The user principal name (UPN) of the Active Directory

user to remove.

group string Required. The UPN of the Active Directory group from which to
remove the user.

Return value

This command returns nothing if it runs successfully.

• • • • • •

ADEdit Command Reference and Scripting Guide 569

Examples

remove_user_from_group adam.avery@acme.com pubs@acme.com

Related Tcl library commands

The following commands perform actions related to this command:

create_aduser creates a new Active Directory user account and sets its
password.

create_adgroup creates a new Active Directory group account and
specifies its scope.

create_user creates a new zone user and user profile based on an
existing Active Directory user.

create_group creates a new zone group and group profile based on an
existing Active Directory group.

add_user_to_group adds an Active Directory user to an Active Directory
group.

set_change_pwd_allowed

Use the set_change_pwd_allowed command to modify the ADS_UF_PASSWD_

CANT_CHANGE flag in the UserAccountControl attribute. This flag controls
whether an Active Directory user can change his or her domain password.
You must specify the distinguished name of a valid Active Directory user
account that should be allowed to change his or her password.

Syntax

set_change_pwd_allowed userdn

Options

This command takes no options.

• • • • • •

ADEdit Tcl procedure library reference 570

Arguments

This command takes the following argument:

Argument Type Description
userdn string Required. Specifies the distinguished name of the Active

Directory user who is allowed to change his or her password.

Return value

This command returns nothing if it runs successfully.

Examples

set_change_pwd_allowed
CN=frank.smith,CN=Users,DC=ajax,DC=test

get_object_field sd

(OA;;CR;ab721a53-1e2f-11d0-9819-00aa0040529b;;WD)
(OA;;CR;ab721a53-1e2f-11d0-9819-00aa0040529b;;PS)

This example deselects the “User cannot change password” account property
for the Active Directory user frank.smith.

Related Tcl library commands

The following commands perform actions related to this command:

create_aduser creates a new Active Directory user account and sets the
password for the account.

set_change_pwd_denied prevents an Active Directory user from
changing the domain password for his or her account.

• • • • • •

ADEdit Command Reference and Scripting Guide 571

set_change_pwd_denied

Use the set_change_pwd_denied command to modify the ADS_UF_PASSWD_

CANT_CHANGE flag in the UserAccountControl attribute. This flag controls
whether an Active Directory user can change his or her domain password.
You must specify the distinguished name of a valid Active Directory user
account that should not be allowed to change his or her password.

Syntax

set_change_pwd_denied userdn

Options

This command takes no options.

Arguments

This command takes the following argument:

Argument Type Description
userdn string Required. Specifies the distinguished name of the Active

Directory user who is not allowed to change his or her
password.

Return value

This command returns nothing if it runs successfully.

Examples

set_change_pwd_denied
CN=adam.avery,CN=Users,DC=ajax,DC=test

get_object_field sd

• • • • • •

ADEdit Tcl procedure library reference 572

(OD;;CR;ab721a53-1e2f-11d0-9819-00aa0040529b;;WD)
(OD;;CR;ab721a53-1e2f-11d0-9819-00aa0040529b;;PS)

This example selects the “User cannot change password” account property
for the Active Directory user adam.avery.

Related Tcl library commands

The following commands perform actions related to this command:

create_aduser creates a new Active Directory user account and sets the
password for the account.

set_change_pwd_allowed allows an Active Directory user to change the
domain password for his or her account.

• • • • • •

ADEdit Command Reference and Scripting Guide 573

Timebox value format

A Centrify role specifies a collection of rights. A role object contains a field,
timebox, that defines what hours in a week a role is either enabled or
disabled. Setting the timebox field in a role object defines when a role’s rights
are in effect.

You can read a role’s timebox field using the ADEdit command get_role_field
and set the timebox value using set_role_field. You can modify an existing
timebox value one hour at a time using the ADEdit library command modify_
timebox.

To interpret a timebox value, or to set it directly, you must know the timebox
value format which is, unfortunately, not simple as defined by Active
Directory. This appendix explains the format.

Hex string

The timebox value is a 42-character (21-byte) hexadecimal value stored as a
string. When the hex value is converted to a binary value, its 168 bits each
map to a single hour within the week. If a bit is set to 1, its corresponding hour
is enabled for the role. If set to 0, its corresponding hour is disabled.

After you define the 168 bits using a hexadecimal value, you can usee the
encode_timebox function to convert the value into an internal format that
specifies when a role is available to use.

Hour mapping

Each day of the week takes three bytes (24 bits) to specify how its hours are
enabled or disabled. The following tables show how the hours of a day are
mapped to the bits within each of a day’s three bytes.

• • • • • •

ADEdit Command Reference and Scripting Guide 574

Byte 0

Hour Bit
12-1 AM 0 (least-significant bit)

1-2 AM 1

2-3 AM 2

3-4 AM 3

4-5 AM 4

5-6 AM 5

6-7 AM 6

7-8 AM 7 (most-significant bit)

Byte 1

Hour Bit
8-9 AM 0 (least-significant bit)

9-10 AM 1

10-11 AM 2

11-12 AM 3

12-1 PM 4

1-2 PM 5

2-3 PM 6

3-4 PM 7 (most-significant bit)

Byte 2

Hour Bit
4-5 PM 0 (least-significant bit)

5-6 PM 1

6-7 PM 2

7-8 PM 3

• • • • • •

Timebox value format 575

Hour Bit
8-9 PM 4

9-10 PM 5

10-11 PM 6

11-12 PM 7 (most-significant bit)

Day mapping

Each of the seven days in a week have three bytes within the 21-byte timebox
value. These bytes are in chronological order from most-significant byte to
least-significant byte. (Note that this is the opposite of chronological bit order
within each byte, which is LSB to MSB.) The starting point of a week is 4 PM on
Saturday afternoon.

The table below shows how each day’s three bytes (0-2) map to the timebox
value’s bytes, listed here in order from most-significant byte to least-
significant byte.

Day byte Timebox value byte
Saturday, byte 2 20 (most-significant byte)

Sunday, byte 0 19

Sunday, byte 1 18

Sunday, byte 2 17

Monday, byte 0 16

Monday, byte 1 15

Monday, byte 2 14

Tuesday, byte 0 13

Tuesday, byte 1 12

Tuesday, byte 2 11

Wednesday, byte 0 10

Wednesday, byte 1 9

Wednesday, byte 2 8

Thursday, byte 0 7

Thursday, byte 1 6

• • • • • •

ADEdit Command Reference and Scripting Guide 576

Day byte Timebox value byte
Thursday, byte 2 5

Friday, byte 0 4

Friday, byte 1 3

Friday, byte 2 2

Saturday, byte 0 1

Saturday, byte 1 0 (least-significant byte)

• • • • • •

Timebox value format 577

Using ADEdit with classic
zones

Centrify supports both classic and hierarchical zones. If you have upgraded
agents to a version of Centrify software that supports hierarchical zones
(version 5.x or later), you can choose to either migrate your classic zones into
a hierarchical zone structure or maintain them as classic zones.

If you choose to maintain any zones as classic zones, however, you should be
aware that the authorization model in classic zones differs from the
authorization model used in hierarchical zones. For example, in classic zones,
authorization is an optional feature that can be enabled or disabled. If
authorization is not enabled in a classic zone, any user with a valid profile in a
zone is automatically granted login access to all computers joined to that
zone.

Because authorization is handled differently in classic zones, there are
specialized ADEdit commands and command options for creating and
managing rights and roles in classic zones. The commands in this appendix
are only applicable when you are working with classic zones.

Enabling authorization in classic zones

The following ADEdit commands are used to enable or disable authorization
in a classic zone and to check whether authorization is currently enabled or
disabled.

Command What it does
is_dz_
enabled

Checks whether authorization is enabled in a currently selected
classic zone.

manage_dz Enables or disables authorization in classic zones.

• • • • • •

ADEdit Command Reference and Scripting Guide 578

Working with privileged commands and PAM applications

With some limitations, you can use most of the ADEdit commands for working
with rights, role definitions, and role assignments in classic zones in the same
way you work with them in hierarchical zones. In a classic zone, however, you
must explicitly enable authorization for the zone. Thereafter, defining rights
and roles or making role assignments work the same in classic zones and
hierarchical zones.

In most cases, any differences or limitations for classic zones involve options
or arguments that are not supported or not applicable in classic zones. For
example, fields such as allowLocalUser, alwaysPermitLogin, and
auditLevel are not applicable in classic zones. You can use the set_role_

field command to set other field values in a classic zone. Individual
commands specify these types of limitations.

Working with restricted shell environments and
commands

Before you can use the restricted shell (dzsh) to run commands in a classic
zone, you must create the restricted shell environment. After you have
created the restricted shell environment in your working context, you can run
restricted shell commands in that dzsh context.

Restricted commands cannot be assigned to a role directly. A restricted shell
environment has to be created first. The restricted shell commands can then
be created under the currently selected restricted shell environment. Only
one restricted shell environment can be assigned to a role. The restricted
shell environment and privileged UNIX commands cannot be assigned to a
role simultaneously. Assigning a new restricted shell environment to a role
removes all of the previously defined privileged UNIX commands from the
restricted shell. Assigning new privileged commands to a role that previously
had a restricted shell environment removes the restricted shell environment
and any restricted shell commands defined for the restricted shell
environment.

• • • • • •

Using ADEdit with classic zones 579

Setting up the restricted shell environment

The following ADEdit commands are used to set up and manage the restricted
shell environment prior to working with any restricted shell commands.

Command What it does
clear_rs_
env_from_
role

Removes the restricted shell environment from the currently selected
role that is stored in memory.

delete_rs_
env

Deletes the currently selected restricted environment from Active
Directory and also from memory.

get_role_rs_
env

Gets the restricted shell environment from the currently selected role
that is stored in memory.

get_rs_envs Gets the list of restricted environments that are defined within the
currently selected zone.

get_rse_
cmds

Gets a Tcl list of restricted shell commands associated with the
currently selected restricted shell environment.

get_rse_
field

Gets the value for a specified field from the restricted shell
environment stored that is stored in memory.

list_rs_envs Prints a list of restricted shell environments defined for the currently
selected zone to stdout.

new_rs_env Creates a new restricted shell environment for the current zone,
stores it in memory, and sets it to be the currently selected restricted
shell environment.

save_rs_env Saves the currently selected restricted environment that is stored in
memory to Active Directory.

select_rs_
env

Retrieves a restricted shell environment for the currently selected
zone from Active Directory, stores it in memory, and sets it to be the
currently selected restricted shell environment for other ADEdit
commands.

set_rs_env_
for_role

Assigns a restricted shell environment to the currently selected role
that is stored in memory.

set_rse_field Sets the value for a specified field in the currently selected restricted
shell environment stored in memory.

• • • • • •

ADEdit Command Reference and Scripting Guide 580

Using restricted commands

The following ADEdit commands are used to set up and manage the restricted
shell restricted shell commands.

Command What it does
delete_rs_
command

Deletes the currently selected restricted shell command from Active
Directory and from memory.

get_role_rs_
commands

Returns a Tcl list of restricted shell commands associated with the
currently selected role.

get_rs_
commands

Checks Active Directory and returns a Tcl list of restricted shell
commands defined for the currently selected zone.

get_rsc_field Gets the value for a specified field from the currently selected
restricted shell command that is stored in memory.

list_rs_
commands

Prints a list of restricted shell commands defined for the currently
selected zone to stdout.

new_rs_
command

Creates a new restricted shell command under the currently selected
restricted shell environment, stores it in memory, and sets it to be the
currently selected restricted shell command.

save_rs_
command

Saves the currently selected restricted shell command that is stored in
memory to Active Directory.

select_rs_
command

Retrieves a restricted shell command in the currently selected zone
from Active Directory, stores it in memory, and sets it to be the
currently selected restricted shell command for other ADEdit
commands.

set_rsc_field Sets the value for a specified field for the currently selected restricted
shell command that is stored in memory.

Creating computer-level role assignments in classic zones

Classic zones support computer-level role assignments. If you want to
configure computer-level role assignments, keep the following in mind:

The classic zone that the computer is a member of must have
authorization enabled before you can create role definitions and role
assignments.

• • • • • •

Using ADEdit with classic zones 581

The role assignment is only valid on the computer where you have made
the assignment.

The role definition you use must be defined in the classic zone that the
computer is a member of.

A computer-level role assignment in a classic zone is similar to computer-level
overrides in hierarchical zones, except that you cannot save user or group
profile information for individual computers. User and group information is
stored in the classic zone. To enable computer-specific role assignments in
classic zones, you must use a specialized zone type, the classic-computer

zone type.

To create a computer-level role assignment in a classic
zone:

1. Precreate the computer in a classic4 zone, if it doesn’t already exist.

2. Create a zone that uses the specialized zone type of classic-computer.

3. Select the classic-computer zone within the classic zone.

4. Create the role assignment.

The following code snippet illustrates the commands to execute in ADEdit to
make computer-specific role assignments in classic zones:

bind ajuba.net
package require ade_lib

1.0
select_zone cn=cls,cn=zones,dc=ajuba,dc=net
get_zone_field type

classic4
precreate_computer rhelqa$@ajuba.net
get_zone_computers

{comp5$@ajuba.net} {rhelqa$@ajuba.net}
create_zone classic-computer
rhelqa.ajuba.net@cn=cls,cn=zones,dc=ajuba,dc=net
select_zone
rhelqa.ajuba.net@cn=cls,cn=zones,dc=ajuba,dc=net
new_role_assignment user5@ajuba.net
set_role_assignment_field role role1/cls
save_role_assignment

You can then get the classic-computer zones by running the get_child_

zones command when the classic zone is selected. For example:

• • • • • •

ADEdit Command Reference and Scripting Guide 582

select_zone cn=cls,cn=zones,dc=ajuba,dc=net
get_child_zones
rhelqa.ajuba.net@CN=c122,CN=Zones,DC=ajuba,DC=net
comp5.ajuba.net@CN=c122,CN=Zones,DC=ajuba,DC=net

• • • • • •

Using ADEdit with classic zones 583

Quick reference for
commands and library
procedures

The following table lists the ADEdit and ade_lib commands in alphabetical
order. The table summarizes the command syntax for each command with
optional elements in [square brackets] and variables in italics. For more
detailed information about any command, see ADEdit command reference or
ADEdit Tcl procedure library reference

Command syntax Abbreviation ade_
lib

add_command_to_rolecommand[/ zonename] acr

add_map_entrykey value ame

add_map_entry_with_commentkey value comment amewc

add_object_valuedn field value aov

add_pamapp_to_roleapp[/zonename] apr

add_sd_acesddl_string ace_string ase

add_user_to_groupuser group X

bind [-gc] [-write] [-machine] [server@]domain [user
[password]]

clear_rs_env_from_role crse

convert_msdatemsdate X

create_adgroupdn sam gtype X

create_aduserdn upn sam pw X

create_assignmentupn role[/zonename] [from] [to]
[description]

X

• • • • • •

ADEdit Command Reference and Scripting Guide 584

Command syntax Abbreviation ade_
lib

create_computer_rolecomputer_role_path group_upn ccr

create_dz_commandname command description form dzdo_
runas dzsh_runas flags pri umask path

X

create_groupupn name gid X

create_nismapmap key:value comment X

create_pam_appname application description X

create_rolename description sysrights pamrights cmdrights
allowlocal rsenv visible

X

create_rs_commandrsc_name cmd description form dzsh_
runas flags pri umask path

X

create_rs_envrse_name rse_description X

create_userad uname uid gid gecos home shell role X

create_zone [-ou] zone_type path [schema_type] cz

decode_timeboxstrTimeBox X

delegate_zone_rightright principal_upn

delete_dz_command dldzc

delete_local_group_profilegroup_name dllgp

delete_local_user_profileuser_name dllup

delete_map_entrykey:index dlme

delete_nis_map dlnm

delete_object dlo

delete_pam_app dlpam

delete_role dlr

delete_role_assignment dlra

delete_rs_command dlrsc

delete_rs_env dlrse

delete_sub_treedn

delete_zone dlz

delete_zone_computer dlzc

delete_zone_group dlzg

delete_zone_user dlzu

• • • • • •

Quick reference for commands and library procedures 585

Command syntax Abbreviation ade_
lib

dn_from_domaindomain_name dnfd

dn_to_principal [-upn] principal_dn dntp

domain_from_dndomain_name dfdn

encode_timeboxstrTimeBox X

explain_groupType gt X

explain_ptypept X

explain_sdsddl_string

explain_trustAttributesta X

explain_trustDirection td X

explain_userAccountControl uac X

get_adinfo domain|zone|host adinfo

get_all_zone_users [-upn] zone_DN X

get_bind_infodomain forest|server|sid|domain_
level|forest_level

gbi

get_child_zones [-tree] [-crole] [-computer] gcz

get_dz_commands gdzc

get_dzc_fieldfield gdzcf

get_effective_groups [-hostname computer_name] X

get_effective_users [-hostname computer_name] X

get_group_members [-ad | -upn] group_UPN ggm

get_local_group_profile_fieldfield_name glgpf

get_local_groups_profile glgp

get_local_user_profile_fieldfield_name glupf

get_local_users_profile glup

get_nis_map gnm

get_nis_map_fieldfield gnmf

get_nis_map_with_comment gnmwc

get_nis_maps gnms

get_object_fieldfield gof

get_object_field_names gofn

get_objects [-gc] [-depth one|sub] [-limit limit] [-f forest] go

• • • • • •

ADEdit Command Reference and Scripting Guide 586

Command syntax Abbreviation ade_
lib

base filter

get_pam_apps gpam

get_pam_field gpf

get_parent_dnDN gpd

get_pending_zone_groups gpzg

get_pending_zone_users gpzu

get_pwnamunix_name gpn

get_rdnDN grdn

get_role_apps grap

get_role_assignment_fieldfield graf

get_role_assignments [-upn] gra

get_role_commands grc

get_role_fieldfield grf

get_role_rs_commands grrsc

get_role_rs_env grrse

get_roles getr

get_rs_commands grsc

get_rs_envs grse

get_rsc_fieldfield grscf

get_rse_cmds grsec

get_rse_fieldfield grsef

get_effective_groups [-dn] [-z] user_DN|user_UPN X

get_user_role_assignments [-visible] [-hostname hostname]
user_DN

X

get_schema_guidschema_name gsg

get_zone_computer_fieldfield gzcf

get_zone_computers gzc

get_zone_fieldfield gzf

get_zone_group_fieldfield gzgf

get_zone_groups gzg

get_zone_nss_vars gznv

• • • • • •

Quick reference for commands and library procedures 587

Command syntax Abbreviation ade_
lib

get_zone_user_fieldfield gzuf

get_zone_users [-upn] gzu

get_zonesdomain gz

getent_passwd gep

guid_to_idguid

helpcommand_pattern h

is_dz_enabled idze

joined_get_user_membershipuser_UPN jgum

joined_name_to_principal [-upn] UNIX_name jntp

joined_user_in_groupuser_UPN group_UPN jug

list_dz_commands lsdzc

list_local_groups_profile lslgp

list_local_users_profile lslup

list_nis_map lsnm

list_nis_map_with_comment lsnmwc

list_nis_maps lsnms

list_pam_apps lspa

list_pending_zone_groups lpzg

list_pending_zone_users lpzu

list_role_assignments [-upn] [-visible] [-user|-group|-
invalid]

lsra

list_role_rights lsrr

list_roles lsr

list_rs_commands lsrsc

list_rs_envs lsrse

list_zone_computers lszc

list_zone_groups lszg

list_zone_users [-upn] lszu

list_zonesdomain X

lmerge [list] [list] [list...] X

manage_dz -on|-off mnz

• • • • • •

ADEdit Command Reference and Scripting Guide 588

Command syntax Abbreviation ade_
lib

modify_timebox strTimeBox day hour avail X

move_objectdestinationDN mvo

new_dz_commandname newdzc

new_local_group_profilegroup_name newlgp

new_local_user_profileuser_name newlup

new_nis_map [-automount] map newnm

new_objectdn newo

new_pam_appname newpam

new_rolename newr

new_role_assignmentupn newra

new_rs_commandname newrsc

new_rs_envname newrse

new_zone_computersAMAccountName@domain newzc

new_zone_groupAD_group_UPN newzg

new_zone_userAD_user_UPN newzu

pop

precreate_computerAMAccount@domain [-ad] [-scp] [-czone]
[-all] [-container rdn] [-dnsnamednsname] [-trustee upn [-
trustee upn] ...] [-nogc] [-stype spn [-stype spn] ...]

X

principal_from_sid [-upn] sid pfs

principal_to_dnprincipal_upn ptd

principal_to_id [-apple] upn pti

push

quit q

remove_command_from_rolecommand[/zonename] rcfr

remove_object_valuedn field value rov

remove_pamapp_from_roleapp[/zonename] rpamfr

remove_sd_acesddl_string ace_string rsa

remove_user_from_groupuser group X

rename_objectname rno

save_dz_command svdzc

• • • • • •

Quick reference for commands and library procedures 589

Command syntax Abbreviation ade_
lib

save_local_group_profile svlgp

save_local_user_profile svlup

save_nis_map svnm

save_object svo

save_pam_app svpam

save_role svr

save_role_assignment svra

save_rs_command svrsc

save_rs_env svrse

save_zone svz

save_zone_computer svzc

save_zone_group svzg

save_zone_user svzu

select_dz_commandcommand sldzc

select_local_group_profilegroup_name sllgp

select_local_user_profileuser_name sllup

select_nis_mapmap slnm

select_object [-rootside] [-attrs a1[,a2,...]]dn slo

select_pam_appname slpam

select_rolerole slr

select_role_assignmentprincipal/role[/zone] slra

select_rs_commandrs_cmd slrsc

select_rs_envrse slrse

select_zonepath slz

select_zone_computersAMAccountName@domain slzc

select_zone_groupAD_group_UPN slzg

select_zone_useruser slzu

set_change_pwd_alloweduserdn

set_change_pwd_denieduserdn

set_dzc_fieldfield value sdzcf

set_ldap_timeouttimeout_in_seconds

• • • • • •

ADEdit Command Reference and Scripting Guide 590

Command syntax Abbreviation ade_
lib

set_local_group_profile_fieldfield_name value slgpf

set_local_user_profile_fieldfield_name value slupf

set_object_fieldfield value sof

set_pam_fieldfield value spf

set_role_assignment_fieldfield value sraf

set_role_fieldfield value srf

set_rs_env_for_roleenvironment srse

set_rsc_fieldfield value srscf

set_rse_fieldfield value srsef

set_sd_ownersddl_string owner_sid sso

set_user_passwordprincipal_UPN password sup

set_zone_computer_fieldfield value szcf

set_zone_fieldfield value szf

set_zone_group_fieldfield value szgf

set_zone_user_fieldfield value szuf

show [all | bind | zone | user | computer | assignment |
object | group | pamright | dzcommand | nismap | role |
license | rse | rs_command]

sid_to_escaped_stringsid stes

sid_to_uidsid stu

validate_licensepath vl

• • • • • •

Quick reference for commands and library procedures 591

	About this guide
	Intended audience
	Using this guide
	Viewing command help
	Documentation conventions
	Finding more information about Centrify products
	Contacting Centrify
	Getting additional support

	Introduction
	How ADEdit uses Tcl
	What ADEdit provides
	How ADEdit works with other Centrify components
	ADEdit components
	ADEdit context
	Logical organization for ADEdit commands

	Getting started with ADEdit
	Starting ADEdit for the first time
	Basic command syntax
	Learning to use ADEdit
	Binding to a domain and domain controller
	Selecting an object
	Creating a new object
	Examining objects and context
	Modifying or deleting selected objects
	Saving selected objects
	Pushing and popping context
	Creating ADEdit scripts

	ADEdit commands organized by type
	General-purpose commands
	Context commands
	Object-management commands
	Utility commands
	Security descriptor commands

	Using the demonstration scripts
	Zone containers and nodes
	Create Tcl procedures
	Reading command line input
	Create a parent zone
	Create child zones
	Create privileged commands and roles
	Add and provision UNIX users
	Simple tools
	Run a script from a script

	ADEdit command reference
	add_command_to_role
	add_map_entry
	add_map_entry_with_comment
	add_object_value
	add_pamapp_to_role
	add_sd_ace
	bind
	clear_rs_env_from_role
	create_computer_role
	create_zone
	delegate_zone_right
	delete_dz_command
	delete_local_group_profile
	delete_local_user_profile
	delete_map_entry
	delete_nis_map
	delete_object
	delete_pam_app
	delete_role
	delete_role_assignment
	delete_rs_command
	delete_rs_env
	delete_sub_tree
	delete_zone
	delete_zone_computer
	delete_zone_group
	delete_zone_user
	dn_from_domain
	dn_to_principal
	domain_from_dn
	explain_sd
	forest_from_domain
	get_adinfo
	get_bind_info
	get_child_zones
	get_dz_commands
	get_dzc_field
	get_group_members
	get_local_group_profile_field
	get_local_groups_profile
	get_local_user_profile_field
	get_local_users_profile
	get_nis_map
	get_nis_map_field
	get_nis_map_with_comment
	get_nis_maps
	get_object_field
	get_object_field_names
	get_objects
	get_pam_apps
	get_pam_field
	get_parent_dn
	get_pending_zone_groups
	get_pending_zone_users
	get_pwnam
	get_rdn
	get_role_apps
	get_role_assignment_field
	get_role_assignments
	get_role_commands
	get_role_field
	get_role_rs_commands
	get_role_rs_env
	get_roles
	get_rs_commands
	get_rs_envs
	get_rsc_field
	get_rse_cmds
	get_rse_field
	get_schema_guid
	get_zone_computer_field
	get_zone_computers
	get_zone_field
	get_zone_group_field
	get_zone_groups
	get_zone_nss_vars
	get_zone_user_field
	get_zone_users
	get_zones
	getent_passwd
	guid_to_id
	help
	is_dz_enabled
	joined_get_user_membership
	joined_name_to_principal
	joined_user_in_group
	list_dz_commands
	list_local_groups_profile
	list_local_users_profile
	list_nis_map
	list_nis_map_with_comment
	list_nis_maps
	list_pam_apps
	list_pending_zone_groups
	list_pending_zone_users
	list_role_assignments
	list_role_rights
	list_roles
	list_rs_commands
	list_rs_envs
	list_zone_computers
	list_zone_groups
	list_zone_users
	manage_dz
	move_object
	new_dz_command
	new_local_group_profile
	new_local_user_profile
	new_nis_map
	new_object
	new_pam_app
	new_role
	new_role_assignment
	new_rs_command
	new_rs_env
	new_zone_computer
	new_zone_group
	new_zone_user
	pop
	principal_from_sid
	principal_to_dn
	principal_to_id
	push
	quit
	remove_command_from_role
	remove_object_value
	remove_pamapp_from_role
	remove_sd_ace
	rename_object
	save_dz_command
	save_local_group_profile
	save_local_user_profile
	save_nis_map
	save_object
	save_pam_app
	save_role
	save_role_assignment
	save_rs_command
	save_rs_env
	save_zone
	save_zone_computer
	save_zone_group
	save_zone_user
	select_dz_command
	select_local_group_profile
	select_local_user_profile
	select_nis_map
	select_object
	select_pam_app
	select_role
	select_role_assignment
	select_rs_command
	select_rs_env
	select_zone
	select_zone_computer
	select_zone_group
	select_zone_user
	set_dzc_field
	set_ldap_timeout
	set_local_group_profile_field
	set_local_user_profile_field
	set_object_field
	set_pam_field
	set_role_assignment_field
	set_role_field
	set_rs_env_for_role
	set_rsc_field
	set_rse_field
	set_sd_owner
	set_user_password
	set_zone_computer_field
	set_zone_field
	set_zone_group_field
	set_zone_user_field
	show
	sid_to_escaped_string
	sid_to_uid
	validate_license

	ADEdit Tcl procedure library reference
	add_user_to_group
	convert_msdate
	create_adgroup
	create_aduser
	create_assignment
	create_dz_command
	create_group
	create_nismap
	create_pam_app
	create_role
	create_rs_command
	create_rs_env
	create_user
	decode_timebox
	encode_timebox
	explain_groupType
	explain_ptype
	explain_trustAttributes
	explain_trustDirection
	explain_userAccountControl
	get_all_zone_users
	get_effective_groups
	get_effective_users
	get_user_groups
	get_user_role_assignments
	list_zones
	lmerge
	modify_timebox
	precreate_computer
	remove_user_from_group
	set_change_pwd_allowed
	set_change_pwd_denied

	Timebox value format
	Hex string
	Hour mapping
	Day mapping

	Using ADEdit with classic zones
	Enabling authorization in classic zones
	Working with privileged commands and PAM applications
	Working with restricted shell environments and commands
	Creating computer-level role assignments in classic zones

	Quick reference for commands and library procedures

